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Abstract

This research addresses methods for exploiting the spatio-temporal joint likelihood

of observed kinematic and nonkinematic (sensor signature) physical events to improve

dynamic object and target recognition. A principal direction is the application of dynamic

programming sequence comparison techniques to condition matching of object signatures

to known models according to observed kinematics - that is, to use information from

observed kinematics in determining allowable aspect angles with which observed signatures

may be matched on models for candidate objects. A second direction is the application of

kinematic/aspect-angle Kalman filter trackers to condition kinematic tracking according to

observed signatures. These conditioning processes dramatically reduce ambiguity in object

recognition, and can be used together or separately to allow computation of a posteriori

probabilities of object class membership using Bayesian methods. Proposals are supported

by results of simulated target tracking and high range resolution radar signature analysis.

The original contributions of this effort include: (1) new approaches for and theoretical

understanding of syntactic methods in multisensor fusion and dynamic object recognition;

(2) extension of estimation and tracking techniques to allow object recognition; and (3)

introduction of a new performance evaluation technique and approach for establishing

performance bounds in dynamic object and target recognition.

xix



APPLICATION OF SEQUENCE COMPARISON METHODS

TO MULTISENSOR DATA FUSION

AND TARGET RECOGNITION

L Research Objectives

1.1 Introduction

The last ten years have seen vast effort applied to the problem of fusing information

from multiple sensors for accurate object tracking and, ideally, automatic object recognition

(AOR) [8, 28, 40, 122, 218]1. Acceptable solutions exist for many of these and other

problems posed under the heading of multisensor data fusion, but practical automatic

object recognition is not yet a reality. The fundamental shortcomings in this area are

reflected by the variety of efforts underway to provide better results [44, 97, 124, 126, 224].

One aspect of sensor fusion which has received comparatively little attention is the fusion of

information on object motion with information on other observable object characteristics -

feature observables or sensor signatures [120, 121, 4, 122, 209].

The intent of this research has been to define new approaches for fusing sensor in-

formation to improve recognition of dynamic objects in general and tactical targets in

particular. The common link between the resulting approaches is their exploitation of the

characteristic relationships between observable motion and sensor signatures for typical ob-

ject classes and behaviors of interest. Inherently, these relationships are forced by physics,

and involve the concept of joint likelihood of object motion and other observables - that

is, when the correct object model is associated with measurements from an unclassified

object, the development of measurements and object state variable estimates over time

should tend to be consistent in all observable domains. An incorrect object class associa-

tion, on the other hand, is more likely to betray itself through some inconsistency betwe .i

the expected and observed motion and/or object signatures.

'Note: throughout this document, citation listings appearing out of numerical order indicate that the

citations are listed in order of decreasing relevance.
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Early in this research, it was observed that many of the problems inherent in melding

information from position/motion sensors and feature sensors could perhaps be addressed

using techniques historically applied in speech processing and related sequence comparison

efforts [176, 193, 182, 195]. Another observation behind this effort is that previously

proposed target tracking algorithms [4, 120, 121, 122, 209] would fail in obvious ways

when incorrect assumptions about target class were made, and that a target recognition

algorithm could use that failure as evidence of an incorrect choice of target class.

Ultimately driven by these insights, the original contributions of this research are the

following:

(1) The extension of previous work in multisensor target tracking [4, 120, 121, 122, 209] to

allow object recognition through the method of multiple model estimator residual analysis.

(2) The application of classical sequence comparison techniques, as used in speech process-

ing, chromosome comparison, and other areas, to multisensor fusion for dynamic object

recognition.

(3) The association of (a) dynamic programming-based state estimation techniques with

(b) classical sequence comparison techniques, and application of these state estimation

techniques to multisensor fusion for dynamic object recognition.

(4) The joining of (1), (2), and (3) to create a new estimator structure exploiting joint

likelihood of object motion and sensor signature measurements for object recognition.

(5) Contributions to the theory of dynamic object recognition as a problem in syntactic

pattern recognition and joint likelihood of all observed events.

(6) The application of classical Bayesian parameter estimation and generalized ambiguity

function techniques for multisensor object recognition.

These contributions provide new approaches for combining information to make ob-

ject recognition decisions, and new or fresh understanding of previous efforts by other

researchers. In most cases, the information to be fused is already available from common

state-of-the-art sensors and can be integrated using techniques to be shown herein with

the addition of computational power only - no new sensors are required. In particular,

unlike neural nets, hidden Markov models, and other currently popular information fu-

1-2



sion algorithms [169, 81, 174, 175, 68], the approaches discussed here do not establish

decision-making parameters through training processes over which the user has no direct

visibility - all decisions are easily traced and accountable according to Bayesian theory,

dynamic programming, and classic parameter estimation methods. Moreover, all state

variables employed in this effort correspond to well-understood physical processes or sta-

tistical representations for those processes.

This dissertation is organized into seven chapters and three supporting appendices.

This first chapter outlines and justifies the research. Chapter II discusses the state of the

art in pattern recognition, target tracking, and sensor fusion. Chapter III exploits the

material of Chapter II to define a new class of object recognition algorithms. Chapter IV

discusses one element in this class, the extension of kinematic/aspect-angle tracking fil-

ters and residual/state monitoring to multisensor object recognition. Chapter V discusses

another element in this class, the application of dynamic programming-based sequence

comparison techniques to multisensor object recognition. Chapter VI recommends ex-

tensions to this effort to explore issues and options not addressed here. The concluding

Chapter VII reviews the major points of this effort. Appendix A gives a glossary of key

terms. Appendix B provides fundamental background material in pattern recognition. Ap-

pendix C lists particular equations and provides results which are considered too involved

for the body of the text or are not part of the original effort of this research.

1.2 Research Overview and Justification

Contemporary researchers generally classify the information available from sensors

into two broad categories - kinematic (or spatial) and nonkinematic (or nonspatial) [8:297-

302] [218:165]. Kinematic or motion-related information is characteristically limited to

measurements of object centroid position and velocity. Nonkinematic information is a

much more diverse categorization, classically including "feature attributes" such as radar

signature, optically-derived shape descriptors, the presence or absence of certain forms of

electromagnetic emissions, and so on. Nonkinematic information is often a direct function

of the object or target aspect angle relative to the sensor, reflecting the "appearance" of

that object to the sensor in the appropriate spectral or algorithmic sense. As we shall
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see, the dependence of aspect angle on kinematics makes the term "nonkinematic informa-

tion" something of a misnomer - the author chooses to refer to these quantities as feature

observables or sensor signatures, as noted in the chapter introduction.

In gene:al, schemes for fusing kinematic information involve versions of the Kalman

fiter/state estimator, in which measured values are compared to mathematical models of

object behavior to derive kinematic estimates that are optimal in some sense. This field is

well-developed and diverse, with a rich body of supporting literature developed over the

past 40 years [153, 154, 10].

In contrast, the fusion of nonkinernatic information for recognition and tracking is

a much newer field. Many approaches to this problem have been proposed [218:213-261],

but the most popular alternatives involve only two basic approaches. First, the "decision

function" or "nearest neighbor" approach [212:13], involves some form of distance measure

between a vector of measured values for selected features derived from an unclassified

object on one hand, and either (1) sets or clusters of such feature values derived from

a priori testing of known object classes (for object recognition) [28, 2271, or (2) clusters

representing current tracks in a trackfile (for observation-to-track assignment) [8:312].

The second, or probabilistic/statistical approach, is based on maximum likelihood

(or classical inference) methods [218:216-219]), Bayesian probability [212] [218:220-222],

or Dempster-Shafer evidence accrual [33:380-386]. Here the user makes judgments regard-

ing the probability that his measurements could occur, conditioned on the presence of one

member of a set of certain likely object types, and combines these judgments in the appro-

priate framework to postulate which object type generated the observed data [14] [8:199-

209]. It should be noted that the decision function and statistical approaches are intimately

related in both theory and practice [212, 92].

The object databases against which nonkinematic features have been classically com-

pared have been just that - tabular data arrays, or feature space mappings, or decision

surfaces in a feature space of one form or another. Increasingly, however, researchers are

turning to model-based approaches, in which the feature values can be derived on-line in

some fashion from a three-dimensional representation of the object [169:111-139]. In ei-
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ther case, often these features are position-, scale-, and (in-plane) rotation-invariant (PSRI)

global descriptors or similar quantities, generally functions of the entire object representa-

tion at a given aspect angle, such as Hu moments and Fourier descriptors [73, 111, 217]

(discussed in App. B).

The problem with this taxonomy, however, is that it is misleading to impose a defini-

tive distinction between "kinematic" and "nonkinematic" forms of information. With few

exceptions, nonkinematic features are functions of the object-sensor aspect angle (and

other factors, of course, like weather). But this aspect angle is immediately a function of

both object and sensor (ownship) kinematics. An extensive review of the literature shows

that this connection, although recognized by some [4, 120, 121, 122, 209], has not generally

been exploited. It is apparent to the author and others that sensor fusion efforts do not

generally use information about motion which can be extracted from observed features, or

information about features which can be extracted from motion [9:177-178] [30].

In the field of classical pattern recognition, considerable effort has been made to

solve the problem of "recognition, tracking, and pose estimation of arbitrarily-shaped

3-d objects" (where the term "pose" refers to the object's aspect angle relative to the

sensor) [102, 105, 110, 179]. These include a number of techniques to extract shape or

structure from motion [110:400-422] [117, 116, 206]. Generally these techniques depend on

(1) making correct assignments between points (or loci of points) on the observed object

and corresponding points (or loci) on a model representation [69, 139], or (2) matching ob-

served values of some global descriptor with model- or database-derived values [47, 73, 111].

Techniques in the first category usually depend on high quality images of the observed

object, and are very sensitive to performance degradation due to the quality of images

available from typical remote imaging sensors. Techniques in the second category are sen-

sitive to errors in segmentation (separating the object from its background), occlusion (the

presence of other objects blocking the object of interest-to-sensor line of sight), and so on.

There are as yet no final "best" answers.

It seems clear that additional research is warranted to find methods for fusing data

from "kinematic" and "nonkinematic" sensors. Note that henceforth, because of the mis-
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leading connotation of the term "nonkinematic," we will refer to "nonkinematic" quantities

as "feature observables" or "sensor signatures."

1.2.1 Object Recognition Scenarios of Interest. Two promising military applica-

tions of kinematic-feature observable fusion for automatic object recognition would appear

to be: (1) fusion of infrared image-derived angle, angle rate, and feature observable mea-

surements with laser ranger measurements, and (2) fusion of high range resolution (HRR)

radar "range sweep" waveform returns and centroid kinematic data from the same radar

system (the latter an example of multisensor fusion in the sense that the different items

of information are extracted by distinctly different sensors within the radar system). Note

the relationship between true and estimated kinematics and signatures for targets in these

scenarios:

Case 1: Consider the process of tracking a main battle tank of unknown class in

a planar turn. Unlike wheeled vehicles, conventional tanks (more generally, vehicles pro-

pelled by tracks, rather than wheels) do not turn with a constant or even continuous

radius of curvature, and in fact their motion can be described as nearly piecewise lin-

ear [86]. Our sampled-data sensor provides a sequence of signature vectors (e.g., classical

global descriptors like Hu moments and Fourier descriptors), as measured at discrete times

over the observation period. Concurrently, from conventional range (laser ranger) / angle

tracking and kinematic state estimation alone, for any feasible target class, we can hypoth-

esize a sequence of expected signature vectors. Comparing the observed sequence to the

kinematically-estimated sequence for the correct target model in Fig. 1.1, we see that their

differences can be described fundamentally in terms of expansions and contractions of one

sequence relative to the other. Is it possible to compare t-, - tw, sequences such that

their origin target classes can be seen to be identical, despite, (us and contractions?

Will a sequence comparison process reduce the likelihood ,,t t uect identifications, in

comparison with other approaches?

Case 2: We sense a moving aircraft with a high range resolution (HRR) radar,

from which we obtain sampled-data measurements of target position, doppler velocity (see

definition in App. A) and "range sweeps" - measurements of radar cross section in relatively
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Figure 1.1. Tank Target - True vs. Estimated Trajectory (Notional)
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fine (small with respect to typical target dimensions) range increments or "bins" along the

target-sensor axis. Stochastic phase interactions between returns from scatterers in any

given range bin make the range sweeps quite noisy, causing deviations from model and test

predictions and limiting our ability to judge the class of the target from any one or perhaps

several returns. Generally, however, distinctive elements (peaks) of the range sweeps stand

out when returns are averaged, or viewed over time as the aspect angle changes, producing

a distinctive sequence like the "sinogram" noted in [81] (for simulation-derived examples,

the reader may wish to look ahead to Figs. 5.20, 5.21, and 5.22). As in Case 1, the radar

position and velocity measurements allow us to estimate the motion of the target centroid,

from which we can estimate the target-sensor aspect angle based on the flight control

physics required to achieve that motion. Thus, as in the previous case, for any candidate

target class, we can hypothesize a sequence of ezpected signatures for comparison with the

sequence of observed signatures. The same questions apply as in Case 1 - the object of

this research was to answer those questions.

1.2.2 Discussion: Sequences and Joint Likelihood. In both cases above, we wish

to assign an object (target) to one class from a set of classes represented by models which

give feature observable values as a function of aspect angle, and define the kinematic

behavior of each object class. From our knowledge of the target (and ownship) kinematics,

and the dynamic limitations for each class, we can estimate the target-sensor aspect angle

as the target executes a maneuver. Now suppose that, centered on the origin of the

classical three-axis target body coordinate frame ("pitch, roll, and yaw" axes, using air

vehicle terminology), we hypothesize a 3-D sphere of unit radius, fixed with respect to that

body frame.

Fig. 1.2 illustrates the sphere and body frame axes - see Fig. 5.23 for the classical

relationship between body frame axes and structure for an aircraft target. Throughout this

dissertation, this "hypothetical aspect angle sphere" will be a key framework for discussion.

As the target-sensor aspect changes, the target-sensor unit vector traces an aspect

angle path or aspect angle "track" like path "A" or path "B" on the target sphere in Fig. 1.2.

At any point on the target sphere, and therefore at any point along an aspect angle path on
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Note: Xb lies at rear of "equatorial plane."

Figure 1.2. The Hypothetical Aspect Angle Sphere

some model, we can predict a value for the corresponding feature observables. Recording

these predictions at discrete points in time along tie kinematically-estimated aspect track,

we obtain a one-dimensional string or sequence of discrete values. If our model choice

and aspect angle estimates are correct, and all other relevant factors are equal between

measurement and prediction, this predicted sequence should correspond exactly to the

sequence of measured values.

Of course, for a variety of reasons, the predicted and measured sequences will never

correspond exactly, even where the model corresponds exactly to the observed target. For

example, variations in the signature generation process, atmospheric transmission, and

sensor processing errors will induce noise in our measurements that cannot be predicted

by a finite-dimensional mathematical model. More subtly, the deviation of true target

kinematics frorm model assumptions will cause the true aspect angle path to lie off of
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the kinematically-estimated or "nominal" aspect angle path. This could happen for an

aircraft target, for example, if our model assumes conventional coordinated turn dynamics,

but the target flies using advanced control-configured dynamics [112] that do not follow

coordinated turn rules.

We may note also that for some choices of object or target, feature space and com-

parison metric (between observed and predicted feature values), each individual element

in the observed feature sequence could be used to define a "maximum likelihood" pose or

aspect angle estimate. If this pose information is known to be accurate with respect to the

correct object or target class, it may be usable with the target kinematic information to

improve estimates for the future kinematics and aspect angle / feature sequence.

In either case, it is clear that, for the proper association of an unclassified target or

other dynamic object with the correct model from a set of known classes, we expect that the

joint likelihood of the observed quantities in kinematic, feature observable, and aspect angle

domains will be consistent over time - an incorrect association will be less likely to exhibit

the correct combination of behavior. We now consider two basic approaches for exploiting

this expectation of high joint likelihood. In both cases, treating the observable events as

sequences over time will be critical, since sequences of observations from physical objects

inherently contain information about the joint likelihood of deriving those observations

from any particular class of objects.

1.2.3 One Approach. One approach for fusing kinematic and feature observ-

able data is suggested by the speech recognition technique called "dynamic time warping"

(DTW) [176, 182, 1931, one of a class of techniques for sequence comparison [195] which

employ dynamic programming (DP) [23, 71]. DTW is a method for comparing sequences

or strings of feature vectors or functions extracted from discretized speech against a "li-

brary" of feature vector strings corresponding to selected words. A close match between

an observed or measured vector string and a library vector string establishes the presence

of that word, or a sound sequence "close" in some sense to the matched library word.

The closeness of two vector sequences is established by a dynamic programming-

based process, which "warps" each library sequence in a particular fashion to make it
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resemble the observed sequence (or vice-versa), and establishes a warping path distance

or "cost" for the matching process. This cost is often simply the sum of the individual

costs, or dissimilarity measures, obtained by the matching of one or more elements of one

sequence to one or more elements of the other sequence. The library vector sequence with

the minimum warping path cost "wins" the comparison process. Note that the warping

is required even when the observed vector string and the library vector string correspond

to the same word, due to variations in factors like speaker pronunciation and background

noise.

The applicability of a DP sequence comparison process to sensor fusion arises from

the fact that sequences develop naturally in object recognition - observations seldom occur

only once in a given scenario. As we saw in the previous section, one often measures a

sequence of feature observable vectors or functions (e.g., "range sweeps" from high range

resolution radar) as the object-sensor aspect angle changes, while from the motion of the

object, one can estimate the object-sensor aspect angle for each potential object class as

the features were observed [5, 77, 120, 121]. Given the aspect angle estimate sequence for

each class, we can then generate a sequence of library vectors or functions representing the

feature observable sequence which should have been produced by each model class while

executing the observed maneuvers.

The basic similarity of these vectors or functions to speech data is immediately ev-

ident, and suggests application of a DP-based matching technique. The matching will

never be exact, yet we may be able to achieve an association between observed and ex-

pected sequences which compensates for errors (noise) in the kinematic estimate, feature

observable measurements, and model, to give a better model-object association than by

comparing kinematics or features in isolation, or by comparison without "warping" (a lin-

ear comparison). A particularly attractive aspect of the proposed fusion scheme is that it

has the potential to work for any object with (1) feature observables that can be expressed

as functions of aspect angle relative to the object body frame, and (2) dynamics that are

(a) restricted by orientation and (b) can be modelled for state estimation.

Dynamic programming sequence comparison-based fusion processes will henceforth

be referred to as motion warping in this effort. We will see, however, that dynamic pro-

1-11



granmming algorithms not heretofore associated with classical sequence "warping" are also

eminently applicable for our purpose.

1.2.4 Another Approach. A number of techniques have been proposed which

estimate pose (aspect) directly from feature observables [102, 105, 208], requiring no input

of kinematic information. These estimates of pose can in turn form the basis for a target

tracker using kinematic and aspect information, as developed first by Kendrick, Maybeck,

and Reid [121] and extended in [120, 4, 209, 63]. However, in general these methods require

reasonably good a priori knowledge of the target class - if kinematic/aspect tracking is

attempted with an incorrect assumption of target class, the tracking filter may quickly

fail, due to irreconcilable differences between (1) what the filter expects to observe and (2)

what it actually observes.

For our purpose of object recognition, however, we will ezploit this tendency for track-

ing failure with improper object class associations. These failures will be identified using

the classical state estimation techniques of fiter residual sequence and state-reasonableness

monitoring - the correct association (object class) is presumed to be the one that does not

fail, or is the best among those that do not fail.

1.2.5 Development Plan. Chapter II discusses the state of the art in pattern

recognition, target tracking and sensor fusion. Chapter III will apply Bayes' Rule to de-

velop a motion fusion framework in which both DP sequence comparison-based and kine-

matic/aspect tracker-based motion fusion object recognition algorithms can be placed.

These motion fusion methods will be shown to be forms of syntactic pattern recognition,

as opposed to the decision theoretic or heuristic methods of pattern recognition [212] more

commonly applied in tactical target recognition. Feature or signature observable measure-

ments, kinematic measurements, and a priori knowledge of object dynamic limitations for

known classes are used as independent sources of information, and the joint likelihood of

those events is exploited in any of several ways to form generalized likelihood functions, the

highest value of which will indicate the correct association of unknown object and known

object class.
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Chapters IV and V will develop aspects of the ideas in Chapter III in detail, and will

show simulation results to support theory. Chapter VI will link ideas from Chapter III

with developments in Chapters IV and V to show how these developments can be exploited

in a number of directions.

The output of this fusion process over several models is the one model for which the

information from all sources - kinematic, feature observable, and a priori model knowl-

edge - is most consistent (a form of mazimum likelihood multisensor fusion for object

recognition). Chapter VI will discuss applications for this approach. For example, we will

define paths by which to attack some problems in tactical target recognition now considered

to be unsolvable.

We will also show that, since kinematic-feature observable fusion algorithms can be

considered as maximum likelihood estimators or generalized likelihood functions, these al-

gorithms are suitable for analysis using the classical state/parameter estimation tool of

generalized ambiguity functions [154, 1981. This tool will allow us to contrast motion-

feature fusion performance using different feature observables, feature comparison metrics,

and object kinematic model assumptions against the performaiice of (1) truly optimal (if

unrealizable in practice, using truth information not available to an actual sensor) maxi-

mum likelihood techniques and (2) more conventional techniques. Significantly, evaluations

with generalized ambiguity functions will lead naturally to a form of Cramdr-Rao lower

bound [184, 155] for the performance of object recognition algorithms.

1.3 Conclusion

In Sect. 1.2.1, we proposed the existence of observed and expected measurement

sequences, and asked two questions: (1) Is it possible to compare these two sequences such

that their origin target classes can be seen to be identical, if so, despite expansions and

contractions? (2) Will a sequence comparison process reduce the likelihood of incorrect

identifications, in comparison with other approaches? This research will show that the

answer to both questions is yes.
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The contributions of this research are (1) to fold dynamic time warping and related

sequence comparison techniques as maximum likelihood methods into the structure of mul-

tisensor fusion, (2) to extend previous efforts in target tracking so as to provide dynamic

object and target recognition, (3) to provide a Bayesian structure for understanding fusion

of kinematic and feature observable information, and (4) to introduce the use of generalized

ambiguity functions as an analysis technique for gauging the effectiveness of these and other

multisensor fusion methods. These developments provide new theoretical understanding

for object recognition, extend and unify - resmuts of previous reseachers, and provide

paths for attacking currently unsolvable pro.lems.

This chapter has defined the inspiration and istification for "motion warping" and

other approaches for fusion of "kinematic" and "nonkinematic" information. In turn, it

has outlined the structure within which this dissertation will develop and demonstrate the

proposed aproaches. The following chapter will examine related concepts in pattern recog-

nition, target tracking, multisensor fusion, state and parameter estimation, and speech

processing.
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II. Background

2.1 Introduction

The purpose of this chapter is to outline the five key disciplines which have con-

tributed to, or form departure points for, the ideas embodied in this dissertation. These

key disciplines are: (1) pattern recognition and automatic object recognition, (2) object

tracking and state estimation, (3) dynamic programming sequence comparison, (4) multi-

sensor fusion, and (5) the theory of generalized ambiguity functions. The field of multi-

sensor fusion has deep roots in pattern recognition and object tracking, and has seen some

application of dynamic programming. This research has greatly strengthened the utility

of dynamic programming in multisensor fusion through the concept of "motion warping",

and uses generalized ambiguity functions to quantify this utility.

Much of the following discussion is oriented toward a specific class of dynamic phys-

ical objects - specifically, objects that may be identified as targets in military operations

or other remote sensing scenarios. The use of the word "target" rather than "object"

in radar sensing is a historical custom - however, the reader should keep in mind that

the fundamental issue in this research is to explore and exploit for recognition the gener-

ally characteristic physical relationships between object behavior and object appearance -

whatever the object, sensor, or scenario.

Chapter III will develop the theory for a class of object recognition algorithms with

this objective, and Chapters IV and V will show results from representative algorithms.

2.2 Pattern Recognition / Automatic Object Recognition

This section provides a structure for relating the accomplished research to elements

in the vast array of existing concepts for pattern recognition and non-cooperative target

recognition (NCTR). These fields have grown explosively and in innumerable directions

in the past ten years, creating a need for articles and texts that simply define taxonomy

without technical detail [28, 55, 89, 97, 2181, and for conferences which bring together

experts in different yet related fields who have worked theretofore in isolation from one

another [42, 43, 44, 124, 126, 231].
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The first two of the following subsections consider in turn the two primary classical

pattern recognition approaches - decision theoretic and syntactic. Finally, we discuss con-

cepts for object recognition with high range resolution (HRR) radar that form a departure

point and comparison baseline for the original research described here. Additional material

on pattern recognition of a generally tutorial nature is found in App. B.

2.2.1 Decision Theoretic Pattern Recognition. Decision theoretic [90] or "sta-

tistical" [92] pattern recognition methods begin with a choice of observable mathematical

quantities or features by which to describe objects of interest. A particular set or vector

of features associated with an object or measurement defines a point in a feature space.

As discussed in the previous chapter, features or feature observables for physical

objects are generally functions of aspect angle. For an ideally-chosen feature set, the

values of features for different classes and discrete orientations (generally a given number

of aspect angle "bins") will cluster separately in the feature space. Cluster dispersion for

any particular object class/aspect angle will occur due to atmosphere and sensor noise,

minor object variations, etc. Well-chosen features provide low ambiguity in the specific

sense of that term used in [154:97]- that a particular combination of measured feature

values tends to identify a particular object and its orientation uniquely.

A particularly desirable form of decision theoretic classifier is one which yields p(wi I z)

for each class wi of J possible object classes - that is, the probability p that an observed

object is a member of class wi, given that we have observed some sensor measurement

(vector) value z. This probability is commonly obtained through Bayes' Rule [212, 197]:

p(z I WO)P(w1) - p(z I W)P() (2.1)
p(w I Z) =) - J

in which p represents a probability or probability density function (if the latter exists),

z represents an observed or measurement value, and wi is the i-th object class (ignoring

aspect angle variations for the moment) from a total of J classes.

Bayes' rule defines the Bayesian classifier - a theoretically optimal classifier under

certain cc aiditions [212:113]. Use of this and related probabilistic or "parametric" clas-
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sifiers require that we establish the probability or probability density p(z I wi) for each

combination of possible measurement z and known object class Wi. This is the process

of density estimation, a form of "training" generally conducted by experiment using tech-

niques discussed in detail in [212:134-154]. Density estimation is generally a nontrivial

process and presents the major obstacle in implementing parametric classifiers [28].

For some actual observed z from an unclassified object, the derived classical likelihood

p(z I wi) of that observation from each class wi provides the new information in a parametric

classification process. Often, p(z I wi) is assumed to be described adequately as Gaussian.

The a priori probability p(wi) is, in military scenarios, often taken from order-of-battle

information which estimates the relative fractions of numbes of each object (target) class

expected on the battlefield. Under the (usually weak) assumption that we have this data

for all potential objects, the rightmost denominator in the previous equation - the sum

of numerator terms for all object classes - allows us to define the a posteriori probability

measure p(wi I z) for a given observed z. The i for which p(wi I z) is greatest is taken to

identify the object class.

In the absence of specific a priori information on the object class distributions, we

may choose to assume them equal, i.e., that p(wi) is the same for each wi. These terms

then cancel from the numerator and denominator of Eqn. (2.1) to produce the often-seen

form:

p(Wj I Z) - p(z I = p(z I Wi) (2.2)PW "=Pz)IW

also called a (conditional) maximum likelihood classifier. In this form, the a posteriori

probability per se is often irrelevant, since the selected class w1 will simply be the one

which maximizes p(z I wi) - the classical likelihood function.

A further modification [10, 33] to this technique is to allow for generation of a z by

some source other than a known object class, such as noise and/or the set of all unknown

object classes. This results in the addition of an equivalent "J + 1st" object class.
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For decision theoretic recognizers which record feature space information for each

object as a function of aspect angle (generally a finite number of aspect angle bins, as

noted above), the "best" feature match for any given object model is often used to provide

a "best" estimate of object aspect angle - a pose estimate. Note that the pose estimate per

se is an angle value, and provides no information about the closeness of the model-object

match in a feature space distance sense. A sequence of pose estimates, or pose estimate

history, is the result of matching a sequence of feature observable measurements over time

to a given model.

Most object recognition approaches are "independent look" algorithms - that is,

they do not consider the location of previous pose estimates in making the most current

estimate. But, for many physical objects (and tactical targets in particular), transitions

between pose estimates imply object motion and/or random fluctuations of some kind

in the feature observable measurements. It would seem, therefore, that allowable pose

estimate transitions should be restricted in some way, so as to be consistent with other

information about each object model, as observed or known a priori. This observation,

made by the author and independently by others [20, 136, 164], but little developed to

date, is a prime motivation behind this research.

2.2.2 Syntactic Pattern Recognition. It happens that decision theoretic classifiers

are ill-posed to derive information from the change of object observations over time. In

our research, we will exploit these time domain relationships - therefore, we now consider

syntactic or structural classifiers, a class of algorithms well-suited for considering time

domain relationships. Ultimately, all of the new techniques in this research will be shown

to be syntactic classifiers. The following points are taken largely from [212], with a flavor

of more recent developments from [90, 161], and examples or elaboration by the author.

Fundamentally, decision theoretic techniques reduce all information about an un-

classified object into quantities, and assign class membership based on information about

corresponding quantities for known object classes. Syntactic pattern recognition, on the

other hand, looks for structure or order in feature observables, and assigns class member-

ship based on similar structure for some known class. In general, the input to a syntactic
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classifier is a sequence of "features" (often called primitives or terminals in syntactic sys-

tems) from some unclassified object, which is compared to corresponding sequences for

known object classes. This branch of pattern recognition arose from efforts to define

mathematical models of grammar for computer analysis of human language - hence the

incorporation of many terms commonly associated with languages.

First, consider an example to illustrate the difference between decision theoretic and

syntactic classifiers. Suppose we wish to design a word recognizer, using individual letters

as features. A simple decision theoretic classifier might then identify the word CAT by

its position in some 26-dimensional alphabetic-quantity feature space corresponding to the

presence of one A, one C, and one T. Unfortunately, completely unable to distinguish order,

this classifier would be unable to discriminate the word CAT from the abbreviations for

Tactical Air Command or Air Training Command (lest this proposal seem too ridiculous,

note that a language recognizer, working in this way on relatively long passages of text,

might well be a workable yet simple proposition). A syntactic word classifier, however,

would distinguish between the three "words" by considering their structure, or order of

the letters.

The following terms are basic to discussion of syntactic pattern recognition:

(1) An alphabet is a finite set of symbols.

(2) A sentence (also string or word) over an alphabet is any string of finite length composed

of symbols from the alphabet.

(3) A language is any set (finite or infinite) of sentences over an alphabet.

(4) Each language has a unique grammar, which describes the structure of its sentences,

and can be defined as the fourtuple (VN,VT,P,S), where

VN is a set of nonterminals (variables);

VT is a set of terminals (constants);

P is a set of productions or rewriting rules;

S is the start or root symbol (often corresponding to an idea to be expressed).
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Grammars in turn are assigned into one of four type categories (types 0, 1, 2, or 3)

according to the kinds of productions allowed in each. Productions are really the rules of

the grammar - in a language sense, they tell us how one set of variables can be replaced

by another set of variables and/or constants. The most general forms of grammna are

"unrestricted" or "type 0" grammars, for which any set of variables can be replaced by

another set of variables and/or constants, or none at all, without regard to context or

previous use of the chosen variables and constants - factors which are critical for the other

grammar types.

The objective of a syntactic pattern recognition or classification process is to identify

the language which generated a given (unclassified) string or sentence of terminals or

features. This is done by analyzing the string to determine which grammar most probably

generated the string - a process called parsing. Parsing techniques are classified as either

top-down or bottom-up. In a bottom-up technique, we start with the sentence itself and

attempt to subdivide it into units which reveal its grammatical structure. In a top-down

technique, we start with each language/grammar set and attempt to construct the observed

sentence, ultimately determining which grammar will most readily do so.

As a simple example of a top-down technique, suppose that we have a sequence of

spoken sounds in an unknown language which we believe, based on a priori information, to

have the English meaning, "the car is broken." We wish to determine the origin language.

Using a top-down parsing procedure, we start with each language and work down through

the grammatical structure (variables like noun, verb, etc.) to generate the appropriate

sequences (one per candidate language) of terminals or constants - sound primitives. Fi-

nally, using sequence comparison techniques such as those to be discussed in Sect. 2.4.2,

we can compare each generated sequence in turn with the observed sequence, assigning

the observed sequence to the language for which we find the closest sequence-to-sequence

match.

In addition to the sequence comparison techniques referred to above for grammar

determination, another parsing technique is provided by the use of finite automata [212,
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70, 161]. A finite automaton A over an alphabet Z is defined as:

.A = (K, Z,,., qo, F) (2.3)

where K is a finite, nonempty set of states, Z is a finite input alphabet, 5 is a mapping of

K x E into K, qO in K is the initial state, and F C K is the set of final states.

In practice, one uses an automaton as a sort of "matched filter' to identify the

grammar of a given string of terminals (constants/features/primitives) [70:190-214]. An

automaton is devised for each grammar, and the string is "read" terminal-by-terminal by

each automaton. Each terminal element in general causes a state change - if the automaton

rests in one of its allowable final states after reading the string, the string is said to have

been accepted by that automaton. The set of all sequences accepted by an automaton

indeed defines a language, and there is a one-to-one correspondence between grammars

and automata. The use of automata for language recognition constitutes a bottom-up

parsing technique.

Straightforward extensions to these ideas lead to the concept of stochastic grammars

and automata, reflecting, for example, the real world variations and associated probability

densities with which any given idea can be expressed in a given language using different

combinations of words and speaker pronunciations. Much more could be said about syn-

tactic pattern recognition - we have discussed here only the topics and techniques needed

for later development.

Syntactic pattern recognition approaches for recognition of dynamic objects and tac-

tical targets are much less conmion than methods using decision theoretic or "statistical"

approaches. A particular set of references showing recent efforts to use syntactic methods

for radar signal classification is [49, 194] - an older reference (about which more will be

said in Sect. 2.5.7 and elsewhere) is [136].

A significant development in syntactic pattern recognition for dynamic object recog-

nition was the 1978 paper by Therrien [211]. He applied the concepts of linear predictive

signature estimation and sequential hypothesis testing [216] to two-class discrimination.

Therrien's approach was drawn from the class of linear estimation techniques which make
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predictions of the next anticipated measurement, based on past measurements, and com-

pare the actual observed measurement to this prediction to derive corrections for the

current estimate, followed by a prediction for the subsequent measurement, and so on.

This difference between predicted and observed measurements has been termed the

innovation [118] or residual [153:218]. Under nonrestrictive conditions, for the correct

association of estimator and observed process, as we will see in Sect. 2.3.1.3, the residual

sequence has interesting properties which make it an indicator of the likelihood that the

observed measurements were generated by an object with parameters like those of the

estimator model.

The drawback to this approach is that dynamic objects and tactical targets in phys-

ical space seldom have sensor signatures that are amenable per se to linear predictive

estimation, as we will discuss in Sect. 3.3. A major direction in this research, however, has

been to define approaches for using techniques similar to those of Therrien where possible,

and to define extensions useful where linear or quasi-linear methods do not apply.

In addition to linear predictive methods, sequential hypothesis testing can be shown

to be applicable to the multisensor fusion algorithms defined in this research - determining

how long sequence comparison or "motion warping" needs to continue in any object recog-

nition scenario to make a decision with desired low probability of incorrect classification.

A recent development in the area of syntactic pattern recognition with tactical ap-

plications is the effort by Seibert and Waxman [199, 220], who trained neural nets to

recognize 3-D objects (aircraft) using sequences of images over changing aspect angles.

The referenced sources list related efforts. Seibert and Waxman do not formally refer to

their efforts as syntactic in nature, but their descriptions of the factors which motivated

them in their chosen direction speak eloquently, if implicitly, of the existence and utility of

"grammars" governing the behavior of real objects over time. Other recent developments

in the area of syntactic pattern recognition are mentioned in the following subsection.

2.2.3 Example: Target Recognition by High Range Resolution (HRR) Radar.

The preceding part of this section has been oriented toward theoretical methods. Since

the accomplished research used simulated high range resolution (IIRR) radar as the fea-

2-8



ture observable sensor, in this final part of our object recognition overview, we will focus

on current approaches to HRR radar target recognition. We will see that both decision

theoretic and syntactic approaches have been applied to this problem. The research ac-

complished for this dissertation significantly increases the theory and practical scope of

syntactic methods for HRR radar and other target recognition problems.

Using high frequency radar pulses with specialized wideband waveforms, it is possible

to isolate radar returns as a function of distance (range) along the sensor-object vector [203,

204, 221, 213, 78, 164]. The returns are summed (as complex vectors) into "range bins"

which partition the distance along the range vector: unlike conventional radar, HRR radar

range bins are small with respect to actual object extent as projected along the range

vector, perhaps several hundred range bins corresponding to the actual object extent. The

"((range sweep," or returned waveform function (radar cross section or "RCS" plotted as a

function of range) is recognized to be characteristic of each object class at each particular

aspect angle, principally due to peaks in the waveform representing collections of major

scatterers at given distances along the sensor-object vector (although not generally at the

same location on the body of the object, i.e., possibly separated in crossrange).

Fig. 2.1 shows a collection of three measured HRR radar signatures for an unidentified

aircraft - the length of the figure is on the order of the size of an aircraft, so that the bin

widths are on the order of 1.05 to 0.50 meters (the actual size of the aircraft is not available).

The rearmost part of the target aircraft lies to the left. Each of these signatures is actually

the result of summing returns from several dozen individual pulses taken over a period of

much less than one second. More will be said about these signatures in Chapter V.

HRR radar signature generation can be treated theoretically as the result of convolv-

ing a sinc-shaped (i.e., a function of the form (sin z)/z) radar pulse in range/time (i.e.,

a rectangle in frequency with chosen center frequency and bandwidth) with an array of

scatterers represented as impulse (i.e., Dirac delta) functions in range/time. As we will see

in Chapter V, many effects observed in simulations and tests are readily explained from

this perspective, at least to first order.
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Three Typical Signature Realizations (Test Data)
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Figure 2.1. Three Typical High Range Resolution Radar Signatures - Rear Aspect (test

data taken from tape GTw1lAtran.dathr, results of [20], provided by [166],
with further processing by the author)

HRR radar is subject to two primary error sources. First, the returns from scatterers

in any given range bin have arbitrary phase, meaning that they will reinforce or cancel

stochastically. Complete reinforcement in all range bins theoretically defines the maximum

possible signal, or the "envelope" of the returned waveform. Total or near total cancellation

in any given bin, on the other hand, produces a sharp downward spike called a "null." The

stochastic nature of this inter-scatterer phase problem is exacerbated for real objects, which

vibrate as they move, causing scatterers to move relative to one another.

Second, signal paths that include more than one scatterer - i.e., paths which reflect

from one scatterer to another (or more) and then back to the sensor - create returns

that appear "later" or at longer range than we would expect from studies that do not

consider multiple-scatterer returns. Since multiple-scatterer interaction models provide

a combinatorial expansion in simulation complexity, many models do not address this

problem [166, 64]. Cavities on the object are a particularly troublesome source of such

noise.

2-10



It should also be noted that HRR radar does not provide "in-plane rotation-invariant"

(see "PSRJ" in App. A) signatures or features - that is, the HRR signature is a function

of the "roll" angle of the target relative to the sensor around the sensor-to-target vector.

This fact is due to the effects of waveform polarization at different target rotation angles.

For small errors in sensor-target roll angle knowledge, effects on target recognition due

to incorrect polarization assumptions are not considered separately from the other (more

significant) error sources noted above.

HRR radar techniques are related to Inverse Synthetic Aperture Radar (ISAR) imag-

ing techniques in the sense that ISAR uses the amplitude and phase of the return in each

range bin, whereas classical HRR radar ignores phase information. Also, whereas HRR

radar techniques yield an identification directly, classical ISAR yields only a crude image,

which then is passed to an image-matching algorithm for actual identification [221, 52].

A contract between the USAF's Wright Laboratory and General Dynamics (GD) was

one of the first detailed efforts in HRR radar, and GD's results as expressed in [20, 94,

78, 213] form the basis for the following part of this discussion. Related efforts are now

underway with Hughes and Westinghouse under separate contracts [166].

The GD HRR recognition approach starts with the gathering of radar range sweeps

for actual targets at discrete intervals ("granularity") of aspect angle and polarization.

Ideally, we have multiple measurements for each aspect angle and polarization over the

entire 47r steradian extent of target aspect angle (i.e., the hypothetical target aspect angle

sphere, as in Fig. 1.2). Each sweep is then processed to extract its significant peaks,

recording them in terms of range (along the sensor-target vector) and amplitude. One

set of such "reduced" measurements (one "reduced" range sweep per discrete aspect angle

value) is chosen to represent the target library set ("set one"). The remaining reduced

measurements, or members of "set two", are used in training the algorithm.

The "slide distance metric" [20, 94, 78] is used (1) in actual application or testing

to define distances (i.e., measures of difference) between elements in set one (the library)

and the measurements from an unclassified target, and (2) in training to define distances

between elements in sets one and two. During the training process, comparisons of elements
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in set one and set two are used to establish statistics whereby, in actual application, the

slide distance results from a given measured signature can be used to define probabilities

of class membership for the unknown target.

In application, the metric is repeatedly applied while "sliding" an unknown target's

reduced sweep in range relative to a library reduced sweep to align the two range sweeps in

each of four different ways - aligning the first peak of the unknown sweep to the first peak of

the library sweep, aligning the second peak of the unknown sweep to the second peak of the

library sweep, and so on through a "fourth peak-to-fourth peak" match. An acceptable

peak match is defined as one for which the amplitude difference for the matched peaks

is less than or equal to some defined value. Following the initial match, the remaining

peaks in the two sweeps are paired, again subject to the amplitude difference criterion,

and (since remaining peaks will not in general be aligned horizontally, i.e., in range) a

horizontal difference criterion.

For a comparison between any two reduced sweeps, this process results in four candi-

date alignments, each of which involves matched peaks, unmatched peaks in the unknown

sweep, and unmatched peaks in the library sweep. The slide distance d of each candidate

alignment is computed using a formula given in [94]:

d = (T 1 + T'2 + T3)1/2 (2.4)1 /2 24
Wb-a

where:

= (f(wb-Xd×,X×4¶p)] (summation is over all matched peak pairs)

T2 = Fpe,n x [l0log(R,,)]2

T3 = Fpe, nX [l0log(R,)12

F, = a constant penalty factor

Wb--. bin-to-amplitude weight (a constant)

hi= the difference in range bin locations for two peaks that have been paired

6,p- the difference in amplitudes for two peaks that have been paired
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Nmpp = the number of matched peak pairs

R. - ratio of power of matched peaks in unknown sweep to power of all peaks in

that sweep

R, = ratio of power of matched peaks in library sweep to power of all peaks in that

sweep

and the "power" of a set of peaks, as discussed in the definitions for R, and R1 , is defined

as the sum of the peak amplitudes in square meters.

Finally, the smallest slide distance of the four candidate alignments is chosen as the

final slide distance between the two reduced sweeps. Finer, bin-by-bin realignment and

slide distance reduction is possible beyond this point, and is discussed in [20], but is not

implemented in the code provided to this author. One may observe that this process

achieves a kind of correlation between the two sweeps.

Another HRR radar signature metric is the MFML, or Minimum Feature, Maximum

Likelihood metric [20] developed by Cyberdynamics under contract to General Dynamics.

This metric has given good results in recent research by Cyberdynamics, subsequent to

the original General Dynamics work [18]. Efforts to date by Westinghouse under contract

to WL/AARA [166] have employed neural nets to analyze individual signatures (i.e., the

classification "metric" is defined by the net during training).

It is significant for our purpose to note that most of the referenced sources [94, 78, 213]

do not discuss target kinematics in any context, particularly with regard to determining

the fundamental feasibility of the maneuvers which are implied by the sequences of as-

pect angles selected during the association process discussed in the preceding paragraphs.

However, the final report for the General Dynamics effort [20] gives equations for "conical

uncertainty," used to size search windows, and the report notes on page 4-2, with regard

to the MFML metric, that "progression" (in aspect angle) of aspect angle (pose) estimates

derived from the recognition process could be used to reduce the probability of misidenti-

fication, since the correct target model will show "smooth progression." The report notes

that "this capability has not yet been implemented."
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Finally, an additional metric is provided from references by Fukunaga [92], Mieras

[164], Mitchell [1661, and Stewart [2071. This metric is a Mahalanobis metric, as defined

in [212], i.e., a quadratically-weighted squared distance of the form [z,, - zw]T'S.• [z, - z,•]

where z, is a vector of range bin returns for an unknown target, z, is a vector of mean range

bin returns for a known aspect angle on a known target of class w, and S.' is the inverse

covariance matrix corresponding to the mean vector z•,. For a process w with the Gaussian

classical likelihood p(z I w) of mean z,, and covariance S,, the Mahalanobis distance M is

the key argument in the "log likelihood" of observing an event z,,, or p(z,, I w). That is,

ln[p(z, I w)] = C - (0.5 x M), where C is a function of Se, which can often be taken as

a constant. The straightforward multivariate Gaussian origin of the Mahalanobis metric

makes it readily applicable in probabilistic approaches, and this metric is the primary

signature metric investigated in this research.

Despite their common use of this metric, the users noted in the previous paragraph

have applied it in significantly different fashions. Fukunaga uses a high range resolution

radar database gathered for two automobile classes (a sedan and a van) at various aspect

angles to illustrate concepts in statistical pattern recognition. This work makes no use of

motion information for a priori limiting (conditioning) of aspect angle. Unlike the other

HRR radar efforts discussed prior to this point, the method of Mieras (Raytheon) [164, 165]

for HRR radar aircraft target recognition is syntactic in nature, and intimately related to

efforts in this dissertation (to be discussed further in Sect. 3.8.1). Maximum likelihood

methods are proposed by Mieras to work around uncertainties in multiplicative scale factor

and range registration (i.e., bin alignment on the unknown target). Finally, Stewart [207]

reminds us that, where the covariance matrix is assumed to be diagonal with equal variance

in each bin, the range registration process is a correlation in the range domain, and is thus

more easily implemented in the frequency domain as a complex conjugate multiplication.

A fundamentally syntactic method for HRR radar target recognition using neural

nets was proposed by Farhat [81]. He defined neural network classifiers using inputs of

"sinograms," or sequences of high range resolution radar sweeps, as generated by constant

angular rate changes of target aspect angle with respect to the sensor (i.e., as with the

motion of a target model on a turntable). Farhat's published work does not discuss,
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however, how he would deal with all of the possible "sinograms" that could be generated

by all possible targets moving over all possible (not generally constant rate) trajectories -

nor does he address the use of kinematic information available from the radar sensor.

Presumably, a properly structured and trained neural net would generalize to some degree,

but Farhat's approach does not clearly offer strong promise of being able to assign an

observed sequence of range sweeps unambiguously to the correct target class.

Air Force Institute of Technology students DeWitt (68] and Kouba [128] have recently

investigated the use of syntactic techniques (hidden Markov models and recurrent neural

nets, respectively) for HRR radar target recognition. It is believed that their methods could

be used in combination with concepts discussed in this research to design fully functional

automatic object recognition systems.

2.2.4 Pattern Recognition - Conclusion. This completes our overview of pat-

tern recognition and conventional approaches to automatic object recognition. Following

sections will consider theory and techniques that we will ultimately fold back into ob-

ject recognition algorithms, in attempts to make better use of information that is often

available, but ignored in decision making.

2.3 Object Tracking / State Estimation

The science of object tracking and state estimation grew out of efforts to use discrete

radar observations to develop continuous object tracks, or estimates of object kinematic

state. The research described in this dissertation in a sense reverses those efforts, using

the kinematic state estimates to recognize the object class that generated the observations.

First, it is essential to understand what information is available from object tracking.

The most significant milestone in object tracking development was the development

of the Kalman filter [113, 119, 153, 198] for optimal state estimation of systems that can be

adequately described by linear dynamics models with forcing functions of (heuristically)

white Gaussian noise, given measurements corrupted by the same form of noise. The linear

system structure of the Kalman filter made it immediately applicable to multisensor fusion

of kinematic information, and special forms - the linearized and extended Kalman fiters -
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were developed to handle nonlinear dynamics and/or measurement equations [154]. With

particular choices of models and noise assumptions for given objects, the extended Kalman

filter forms the core of nearly every object tracking software system in use today.

2.3.1 The Kalman Filter and Other Estimators. The purpose of this section

is to delineate the equations for the conventional Kalman filter and the modifications to

those equations necessary in the case of the extended Kalman filter. The form of the

equations will be that for a continuous dynamic system for which discrete (sampled data)

measurements are available (the most common case in general and for tracking systems

in particular). The last portions of this section discuss optimal smoothing of Kalman

fiter estimates, parameter estimation with multiple model Kahnan filters, and nonlinear

estimators. This information is taken from texts by Maybeck [153, 154], in some cases as

previously summarized by the author [143].

2.3. 1. 1 The Kalman Filter. The Kalman fiter derives the optimal estimate

for a linear dynamic system described by:

i(t) = F(t)x(t) + B(t)u(t) + G(t)w(t) (2.5)

and which has discrete linear measurements corrupted by white Gaussian noise:

z(t1 ) = H(ti)x(ti) + v(t1 ) (2.6)

where:

x = an n-dimensional system state vector

F = an n x n-dimensional plant dynamics matrix

B = an n x r-dimensional deterministic input maLrix

u = an r-dimensional vector of deterministic inputs

G = an n x s-dimensional dynamics driving noise distribution matrix

w = an s-dimensional vector of white Gaussian dynamics driving noises
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z an m-dimensional measurement vector

H an m x n-dimensional measurement matrix

v = an m-dimensional white Gaussian noise vector

t = time (function argument)

t- ith sample time (function argument)

The white Gaussian noise vectors w(t) and v(ti) are assumed to be zero-mean, in-

dependent, and to have covariances defined by:

E[w(t)wT (t + -r)] = Q(t)6(r) (2.7)

and

E[v(t,)v T (tj)] = R(t,)6,j (2.8)

where:

E = the expectation operator

Q(t) = an s x a-dimensional positive semidefinite matrix describing the strength of

the dynamic driving noise vector, w(t), at time t

R(ti) = an m x m-dimensional symmetric positive definite matrix - the covariance

of the measurement error at time ti. See [153:216] for further discussion on the assumption

of positive definiteness for R(tO)

6(r) = the Dirac delta function, equal to infinity for r = 0 and zero elsewhere, with

area of unity when integrated over all -r (units of time- 1 )

=ij = the Kronecker delta, equal to one for i = j, zero otherwise (dimensionless)

For these systems, the optimal estimate is computed after each measurement as:

i(t+)= i(t-) + K(t,) [z, - H(t,)i(t-)] (2.9)
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and the estimated covariance of the (zero-mean) error for this estimate is:

P(t+) = P(t-) - K(ti)H(t,)P(t-) (2.10)

where:

i(t+) = estimated value of system state variables of interest after measurement

update at time t,

i(t•-) estimated value of system state variables before update at time t4

K(ti) = Kalman filter gain at time t,

zi = observed measurement values at time t1

H(ti) = measurement matrix at time t. (post-multiplied by *(t,-) to give the predicted

measurement value for time ti)

[z. - H(t 1)*(t-] - the filter residual, or difference between observed and predicted

measurements at time t,

P(t+) = estimated error covariance after measurement update at time tj

P(ti-) = estimated error covariance before measurement update at time t.

and K(ti) is found using the relation:

K(ti) = P(ti-)H T (t,) [H(ti)P(t )H T (t,) + R(ti)]- 1  (2.11)

for which all elements are defined above.

The elements of R and P at time t- are obtained by propagating the estimates of

those quantities forward in time from the previous set of values according to the state

dynamics:

*(tIti_1) = F(t)*(t I ti-,1 ) + B(t) u(t) (2.12)

and

P(t I ti-I) = F(t)P(t I ti- 1) + P(tI ti-)FT(t) + G(t)Q(t)G T (t) (2.13)
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where i(t I ti-1) = the estimated values of system state variables at time t based on

measurements through time ti- 1 , and the meanings of other variables may be inferred

from earlier discussion. The initial state value is modelled as a random vector normally

distributed with mean iO and covariance P0. Often in the case of radar tracking, xo is

derived from the initial measurements and P 0 is a function of the e,•'or statistics of those

measurements [10:80-82] [35:153-154] [143].

Note in particular that the accuracy of a Kalman filter state estimate so generated

is completely dependent on the extent to which the filter dynamics, measurement, and

noise statistical models reflect the true processes. In most cases, the true processes are

either not fully understood or cannot be modelled exactly, or to do so would result in

unacceptable fiter computational requirements. In either case, the performance of a pur-

posefully reduced-order and simplified filter can only be proven by actual use, but ideally

it should be tested prior to implementation by simulating operation with a high fidelity

truth model [153:289-291].

Consider, on the other hand, a process for which dynamics and/or measurements

cannot be described by the linear Eqns. (2.5) and (2.6) above. An "extended" Kalman

filter routine can be written for a system in which it is possible to express dynamics by an

equation of the following more general form:

Yc(t) -- fix(t), u(t), t] + G(t)w(t) (2.14)

where:

x an n-dimensional system state vector

f - an n-dimensional vector dynamics function

u = an r-dimensional vector of deterministic inputs

t - time

G = an n x s-dimensional dynamics driving noise distribution matrix

w = an s-dimensional vector of white Gaussian dynamics driving noises
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and where measurements can be expressed as:

z(t,) = h[x(ti), t,] + v(t,) (2.15)

where h = an m-dimensional vector measurement function, and other values are as defined

earlier. Note that for this development, the zero-mean white Gaussian noises w(t) and v(ti)

are, as before, required to be independent of each other and to enter the system linearly. As

is the case with the conventional (linear) Kalman filter, the extended Kalman filter for the

case of continuous dynamics and discrete updates is implemented as a series of alternating

updates and propagations of the state estimate and filter-compute • -. -r covariance.

The updated state vector and covariance matrix are propagated forward in time to

the next update using the relations:

*(t I ti- 1) = f[*(t Iti,_1),u(t),t] (2.16)

and

F[fc(t Itj_j),t]P(t Iti_1) + P(t It_•)F T[k:(t Iti- 1), t] + G(t)Q(t)G T(t) (2.17)

where all quantities have been defined earlier except:

F[fi(t I t_-1), t] = an n x n matrix of partial derivatives, aOfx.u(tt] x=ý(tjt,_Ox

Updates are performed using the following equations:

:k(tt+) = :R(tC-) + K(ti) f{z, - h[i(t7 ), ti]} (2.18)

and

P(t+) = P(t. ) - K(ti) H[j(t7-), ti] P(t.) (2.19)

where:

h[*(t, ), ti] the predicted measurement value at time tj
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{zi - h[*(tJ-), t]} = the filter residual, or difference between observed and predicted

measurements at time ti, in the form appropriate for the extended Kalman filter

H[*(t-), ti] = an m x n matrix of partial derivatives, ah[xt.]
ax xLk(ti)

and K is computed as given earlier using the value of H computed above. Other values

are as defined earlier.

The matrix partials F and H represent the successive relinearization about newly

declared nominal values, i.e., the latest best estimates of system state. Note therefore that,

unlike conventional (and linearized) Kalman filters, the extended Kalman filter relations for

updating and computing the filter-computed error covariance are functions of the estimate

values. This dependence is unfortunate in that it forbids calculation of the actual filter

gains and covariances a priori, an on-line computation-saving process which can be done

for the linear filter. Pre-computed and constant-gain extended Kalman filters have been

constructed using gain calculations from reasonably well-known nominal state trajectories,

however [154:57].

2.3.1.2 Forward-Backward Kinematic State Estimation: Smoothing. In

most tracking applications, we can accept a current estimate of the system (object) state,

based or conditioned on the prior and current measurement history. In some applications,

however, we need to define the best estimate of system state at each point in time along

some portion of a trajectory, with the estimate at any time conditioned not only on prior

and current measurements, but also on measurements taken after that time. The process

of obtaining this estimate is called smoothing [154, 159, 160]. A typical requirement for

smoothing arises in post-test analysis for antiaircraft missile test intercepts (without war-

head detonation), where a best estimate of miss distance is required for lethality assessment,

based on the complete measurement history of the engagement, i.e., for measurements both

before and after the missile passes by the target aircraft.

An analogous motivation will exist for the research discussed here - in part, this

research requires an estimate of aspect angle based solely on aircraft kinematics (more

precisely, measurements of translation states). Under normal circumstances, as will be

discussed in Chapter V, aircraft orientation can be reasonably well estimated as a function
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of aircraft velocity and acceleration - acceleration commands (implemented directly by

change of pitch, roll, yaw, thrust, or, if the design allows, drag) being an unknown input

by the pilot. Our kinematic measurements, however, are generally of position only (perhaps

position and doppler-derived velocity), and estimating velocity and acceleration inherently

require us (at least conceptually, if not explicitly in the algorithm itself) to differentiate

our position information once and twice, respectively. This implicit twofold differentiation

and unpredictable pilot inputs mean that our ability to estimate acceleration at some time

ti from prior and current position measurements is quite limited. If we are willing to

wait, however, measurements of position for times beyond time ti will reveal much about

the acceleration and orientation at time ti. Thus, we may choose to make a series of

radar measurements for an aircraft undergoing some maneuver, and then estimate the

most likely aspect angle for each point in time during that maneuver, conditioned both on

measurements before and shortly after that time point. For this purpose, we will require

a smoother.

There are three main forms of smoothers, based on measurement information avail-

able and state estimate desired [154:1-18]: fixed interval, fixed point, and fixed lag. For

the fixed interval smoother, we assume the availability of a set of measurements over some

time interval, and determine the best estimate of the state for each point in time during

that interval, conditioned on all of the measurements taken during that interval. For a

fixed point smoother, we seek an estimate of the state at one time tp only, conditioned

on measurements before and after time tp up until the most recent time, continuing to

improve the estimate with measurements until some final time tf. Finally, for a fixed lag

smoother, we find an estimate for the state at each point along the trajectory, conditioned

on measurements prior to that point in time and measurements for some fixed time interval

(lag) beyond.

For the purpose considered here, the last form, or fixed lag smoother, is most relevant,

and only this form will be discussed here. We will generally expect to maintain track on

an aircraft target for a short time before selecting a time period over which to perform

"a target recognition process (a period selected, for example, because the target executes

"a revealing maneuver - one for which we expect significant differences between signatures
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for potential target classes). Information collected prior to the period of interest should be

made available to the estimator. The reader might point out that this implementation by

definition imposes an added time lag beyond that required for a fixed interval smoother,

but if this time lag is critical, we have options for producing smoothed estimates of the state

for times during the lag period as well (e.g., a set of fixed point smoothers for constantly

changing points in time during the lag).

Equations and procedures for implementing the fixed interval smoother are shown in

App. C in the interest of saving space here. These equations are provided in linear Kalman

filter format, as presented in [154:16-17], but no significant difficulties are encountered in

applying them under extended Kalman filter assumptions.

2.3.1.3 Residual Analysis and Multiple Model Filtering. A well-known

application for Kalman filters [154:129-136] is the estimation of parameters for state dy-

namics ("plant"), measurement, and/or noise models, simultaneously with state estimation

itself, for systems from which measurements are available, but for which true parameter

values are unknown. Note that the distinction between states and parameters made here

is taken from Maybeck [154:69], essentially that parameters and states taken together are

variables that define a system and its activity, but parameters, if they vary at all, vary

slowly enough to be considered essentially constant for periods of interest to the estimator.

In our case, for example, we might recognize the physical structure of a tactical target

as defining its parameters, while its six degree-of-freedom ("6 DOF" - three translational

and three angular degrees of freedom) motion through physical space over time defines its

state history.

When a discrete, finite number of likely parameter vectors (values) can be identified

a priori, we can define a set of Kalman fiters according to these model parameters, and use

the filters in a multiple model adaptive estimator (MMAE) structure to estimate the true

parameter vector for the unknown system. We will use the variable w here to represent

sets or vectors of parameter values, recognizing that w was used earlier in this chapter to

represent object classes for pattern recognition. This choice is completely intentional. One

of the basic theme, of this research is that an "object" is, in an abstract sense, simply a
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point or vector of parameters in some infinite dimensional parameter space, which we must

approximate or model as finite dimensional in practice.

Parameter identification using sets of Kalman filters, or multiple model estimation, is

accomplished by analyzing the residual sequences from the respective filters. Filter residu-

als are the quantities {zk - H(tA)*(t- )}, for a linear Kalman fiter, or {zk - h[:i(t- ), tL]} for

an extended Kalman fiter - that is, the differences between actual and expected measure-

ments at each time tk. These residuals were respectively the quantities in square brackets in

Eqn. (2.9) and braces in Eqn. (2.18) which provide new information to recursively update

the current state estimate.

For a linear fiter with the classical Gaussian noise assumptions and proper model

parameters wi, the residual sequence over time can be shown to be zero mean, white (in-

dependent in time), and Gaussian, with covariance A,(tA) = H(tk)P(tk-)H T (tk) + R(tk).

Equivalently, we can say that we expect the measurements zk to have the probability den-

sity function or likelihood p(zk I ZA- 1 , w•), which has a mean of H(tk)i(t- ) and covariance

H(tk)P(tk)H T (tk) + R(tk). These properties tend to hold true (to first order) as well

for cases well-estimated by linearized and extended Kalman fiters (in the latter case, the

mean is given by h[i(t-)] rather than H(tk)i(t-)).

It is extremely important to recognize that the likelihood p(zk I ZA-,, w,) is explicitly

a measure of the joint likelihood that the system (parameter set wi) modelled by the Kalman

fiter could simultaneously output the elements of the observed measurement vector zk,

having previously output the measurement vector sequence Zk_1. The utility of residual

analysis is that measurements from a system with parameters wj, processed by a filter

designed for parameters w, j wj, will not in general exhibit the proper residual mean (i.e.,

zero) or covariance. This deviation betrays an improper model choice.

At this point, we need to observe that this approach is intimately related to the

method of Therrien [211] [9:177-1781 noted in Sect. 2.2.2 above. Therrien observed that

a wider class of tools than simply the Kalman fiter are available which produce residual

sequences having the properties noted above. His approach, however, was oriented toward

linear prediction of sensor signatures for residual analysis. In cases of interest to us, as we
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will see in the following chapter, linear prediction of sensor signatures is not generally fea-

sible, yet we desire to exploit the information contained in these signatures. In subsequent

chapters, this research will extend residual analysis for object recognition using kinematics

and sensor signatures, where linear prediction of signatures is not reasonable or feasible.

Continuing the discussion of classical multiple model parameter estimation, note that

given a priori knowledge of the likelihood of parameter sets wj, Bayes' Rule can be used

to find an a posteriori probability of the presence of each parameter set, conditioned on

the observed measurements and a priori knowledge:

k

{f(0,1 p~z,)=
p(W, I Zk) J,,I{H: 1 [P(Zn I Z.- l,W1 )]}p(wi ) (2.20)

for i = 1, 2,..., J, where:

Z,_1 x= a set of n - 1 measurement vectors z

zn = a vector of measurements available at time t,

and other variables are as defined earlier.

An iterative version of Eqn. (2.20) which converges in practice [154:133] to an a

posteriori probability of one for the true parameter set w is given by:

p(Wi I -k P(Zk IZAk-l,Wi)P(Wi I Zk1) -(.1
E 1p(z't I Zk--,w,)p(w, I Z'_ 1) (2.21)

where:

p(wj I Zo)= p(wj) (the a priori probability of class wj)

and other variables are as defined earlier.

Note that in the absence of specific information on p(wj) for each j, they may be

assumed equal, or effectively ignored. This development is entirely analogous to that of

Eqn. (2.2).

Conceptually, Fig. 2.2 expresses the way in which this multiple model parameter

estimation process is conducted. Note that this figure and the preceding discussion have
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Where: zk = the k-th element in measurement sequence Zk

wj =the j-th class of J target classes

r3 = the residual vector for class j

Aj = the residual covariance for class j

p(wj I Zk) = the a posteriori probability of class j

Figure 2.2. Multiple Model Estimation Algorithm

not considered the fact that it is possible and often desirable to obtain a single "over-

all" estimate for the state ik and parameter set w, conditioned on the individual state

estimates provided by all of the individual estimators, and the likelihoods of their respec-

tive parameter sets. This capability will not be required for our purposes, but is covered

in [154:129-136].

An extension to the basic concept of parameter estimation through residual analysis

and multiple model filtering is that of "state reasonableness checking" [59, 157]. If the

filter designer knows that a particular state in a fiter designed for a particular parameter

set should have a certain nominal value, he may heuristically treat the difference between
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the estimated value and the nominal value like a residual, with variance given by the

appropriate element in the filter covariance matrix P(t+). Modifying Eqn. (2.20), this

results in a Bayesian parameter estimation format of the form:

{flj[p(Z.,*i I Z_,,
p(WI{l- 1[P(z,,, x ZI _ , w 3)]}jp(w) (2.22)E,• j:1{II,•1[p(Z.,jr I Z.-,Wj)]}(

where:

n = state variable estimates at time t,, for which we wish to check reasonableness

(generally a proper subset of the filter state vector estimate i(t,,) - hence the superscript

r).

and other variables are as defined earlier. A convergent form of this parameter estimator

can be defined analogously to Eqn. (2.21).

A further extension to this basic multiple model estimator approach provides for the

parameters of the estimators themselves to change or adapt based on observed a posteriori

parameter class probabilities [154:136] [147]. This is the most general form of the multiple

model approach, or the true multiple model adaptive estimator.

2.3.1.4 Nonlinear Filters and Further Developments. We have seen that

the extended Kalnan fiter provides a means to apply linear filter theory to systems with

nonlinear state dynamics and/or measurements of the form given in Eqns. (2.14) and (2.15),

by successively relinearizing about the latest best estimate. The prices paid for this facility

are several: the resulting estimate is neither "optimal" with respect to every reasonable

definition of optimality [153:205] (e.g., the extended Kalman filter generally provides a

biased estimate of the true state [154:52]), nor is fiter stability guaranteed (as is linear filter

stability under nonrestrictive assumptions [154:24]), nor are fiter gains precomputable.

Consider, on the other hand, an arbitrary nonlinear system of the form specified

by the following heuristic (since its form is incorrect for use in a proper stochastic inte-

gral) nonlinear stochastic differential equation (where all variables have been previously

defined) [154:159-202]:
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x = fix(t), u(t),W(t),t] (2.23)

It can be shown that solutions to this state equation wiln not in general be Markov

(specifically we refer here to a Markov-1 system): i.e., knowing the value of x at some

time ti- 1 does not provide as much information about x at some later time t. as we might

obtain with knowledge of x at ti_ 1 and at earlier times. This failure to be Markov means

that we cannot propagate a conditional density of the state estimate, such as we did in

effect for the linear Gaussian case using Eqns. (2.12) and (2.13). Thus, although we can

use Bayes' Rule to define the change in our estimate from a measurement at any given

time, we cannot properly propagate that information forward to the next measurement

time.

However, for a system which can be described by an ItM stochastic differential equa-

tion of the (rigorous) form:

dx(t) = f[x(t), u(t), t]dt ± G[x(t), u(t), t]dS(t) (2.24)

or, heuristically,

i(t) = f[x(t), u(t), t] + G[x(t), u(t), t]w(t) (2.25)

(where d13(t) is the stochastic differential of a vector Brownian motion process and all other

variables have been previously defined), then the solution x(t) is Markov (although not

generally Gaussian), and it is conceptually possible to propagate the conditional density,

conditioned on the previously known state value, using the forward Kolmogorov equation,

or Fokker-Planck equation [154:192-215]. Given measurements of the form in Eqn. (2.15),

Bayes' rule, and the Chapman-Kolmogorov equation, we can theoretically define an opti-

mal nonlinear estimator of the conditional density of states, conditioned on the observed

measurement time history [154:212-215]. However, this optimal estimator generally will

be infinite dimensional, and therefore impossible to implement in practice.

However, if we choose to approximate conditional densities of x with a finite number

of moments or an assumed Gaussian form (noting that Gaussian densities require but two
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moments for a complete density function characterization), we can define conditional mo-

ment estimators [154:215-238], higher order filters that can be implemented in a practical

fashion (at least through fourth moments) to provide improved performance over the ex-

tended Kalman filter. Under certain assumptions and/or conditions (ignoring higher order

derivatives, etc.) [154:223], since Eqns. (2.5) and (2.14) are It6 stochastic equations with

the general form of Eqn. (2.25), these higher order filters reduce to the extended Kalman

filter or even linear fiters.

A particularly efficient modification to the extended Kalrnan filter, providing gener-

ally intermediate performance between the basic extended Kalman filter and the nonlinear

filters discussed above, is the addition to the extended Kalman fiter of so-called "bias

correction terms" [154:215-238]. These terms are in fact key terms from the higher order

filter expressions. In every case noted so far, however, improved performance is gained

only at the expense of additional computation. Readings by the author appear to show

in general that, thus far in practice, systems designers find the basic extended Kalman

filter adequate for most purposes, and do not incur the expense of going to higher order

nonlinear fiters.

A number of other routes to nonlinear filters are available, as discussed in [154:239-

259]. In particular, recent work by Bishop [32] demonstrated application of a geometric

nonlinear filter to aircraft tracking. His effort is of special interest because this author's

extensive literature survey (see previous references in this section) indicates that Bishop's

work is perhaps the only fundamentally new approach to kinematic measurement-only

aircraft tracking for fire control (gun aiming) in the last ten years. This effort is discussed

in more detail in App. C.

2.3.2 Object Tracking with Kinematic Measurements Only. Prior to the landmark

effort by Kendrick et al. [120, 121], object tracking filters or target state estimators were

designed to use only "kinematic" measurements - defined here as in Chapter I to be

measurements of the translation of the object centroid through physical (generally three-

dimensional) space. This information took the form of measurements of object range, range

rate, pointing angle, and angle rate, as provided to varied extents by radar, passive optical
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or infrared tracking systems, or laser. An excellent historical discussion of the material

presented here is found in the 1984 work by Chang and Tabaczynski [50].

2.3.2.1 Common Filter Models for Tactical Targets. Given that an ex-

tended Kalman filter has been selected for a particular tracking problem, the designer

is faced with three decisions or choices - reference frame in which to implement the fil-

ter, object (behavior) model, and measurement noise assumptions. We will address the

more common choices for each in turn, again drawing heavily from a previous work by the

author [143] - a recent (1990) work giving more detail is [35].

The two principal frames considered for airborne tracking are the line-of-sight (LOS)

or antenna frame, and the inertial or inertial measurement unit (IMU) frame. The LOS

frame must be further classified as constantly rotating with respect to inertial space or

space-stabilized but impulsively realigned between measurements [229]. For radar tracking,

the LOS frame is easily related to the "measurement coordinate" frame [35:183] in which a

tracking problem may be directly posed in the m-dimensional measurement vector space.

Variations in IMU frame mechanizations depend primarily on the Cartesian frame with

respect to which the designer desires to define accelerations. Common choices of inertial

reference frame include the locally-fixed North-East-Down site or navigation frame, as for

ground or local air vehicle tracking, or the earth-centered geocentric frame (fixed with

respect to the stars), as for satellite tracking.

Since object dynamics are more easily expressed in an inertial frame, the use of an

inertial frame often makes the object state equation (Eqn. (2.14)) more tractable, and,

with certain dynamics models may even make it linear, as in Eqn. (2.5). With radar mea-

surements of range and (small) error angles in azimuth and elevation, and perhaps range

and/or angle rates, the LOS frame, on the other hand, can provide a linear measurement

equation (errors induced by LOS frame implementations, and their compensation, are

discussed in [35:184-188]). Linear relations are desirable in extended Kalman filter formu-

lation where possible because they reduce the computationally expensive need to compute

partial derivatives. In usual practice, the computationally more attractive filter design is

often one with linear state dynamics and nonlinear measurements. This arises because
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the dynamics relations are generally computed much more often in an extended Kalman

filter than the measurement relations - to maintain high accuracy in numerical integration,

dynamics are propagated sequentially over many subintervals of the measurement sample

period. This is notably often the case for radar tracking.

The choice of an appropriate model for object dynamics must be based on a careful

study of what an object is likely to do. Perhaps the most popular tactical target dynamics

model is the Gauss-Markov Acceleration model, as proposed by Singer [202]. This model

assumes an exponential correlation in time between the accelerations in any direction in

inertial space - the state equations for each spatial dimension are of the following form:

i ii r

PXT/I 0 1 0 PXT/I 0

i;XT/ = 0 0 1 I VTI + 0 (2.26)

aiTli 0 0 -1/-T aTlZ w

where:

p, v, a -- (respectively) position, velocity, and acceleration

z = arbitrarily, one of three orthogonal directions in the chosen inertial frame

TII = indicator that quantitities are for the target, relative to the inertial frame

i indicator that quantities are coordinatized in inertial frame coordinates

•- correlation time for target accelerations

w = zero-mean white Gaussian noise of strength Q, as discussed in Sect. 2.3.1

Note that the acceleration in the above equation is the output of a first order lag

driven by white Gaussian noise. Simpler models may provide for (1) zero acceleration

(constant velocity) targets, or (2) acceleration as a continuous white Gaussian noise process

(interpretable as equivalent to the first model but with pseudonoise added to allow for

filter tuning), or (3) acceleration as the integral of white Gaussian noise (a Brownian

motion process) of given strength. These modelling possibilities and attendant cautions

are discussed from a general but tracking-relevant perspective in [153:180-185]. Some of

these and other models, including, for example, piecewise constant (in time) acceleration,
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Figure 2.3. The Singer Model for Acceleration Probability Density

with each piecewise constant value found as the realization of a discrete white Gaussian

noise process, are discussed in [10:82-88].

Using the Singer approach as in Eqn. (2.26), the designer must specify the correlation

time r and the strength Q (a scalar in any one dimension) of the white Gaussian noise. As

discussed in [143], the correlation time is inferred directly from studies of target maneu-

verability such as [95]. Given a choice for r, and a zero-mean Gaussian approximation for

the magnitude of the target acceleration (i.e., a standard deviation o'), the designer can

define Q = (2/Tr)o 2 readily as shown in [153:178].

Recognizing thtL no real target has a Gaussian acceleration density (since there

is no upper bound on the acceleration magnitude for a Gaussian density), Singer [202]

defined a from the second moment of a symmetrical, zero-mean density based on discrete

probabilities of some maximum positive or negative acceleration or zero acceleration, with a

uniform probability density for accelerations between the maximum and minimum values.

This density is shown in Fig. 2.3, where A represents vehicle acceleration, Pmax is the

discrete probability of some maximum acceleration Amax, and P0 is the discrete probability

of no acceleration. This probability density function and associated formulas are shown

in [202, 143, 35, 120].
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Another popular dynamics model for tactical targets is the Constant Turn Rate

model, based on the assumption that the target performs planar, constant turn rate,

constant speed, or circular, maneuvers. This model was proposed for ground targets by

Burke in 1978 [140:265] and independently for air targets by others around the same time,

and investigated for air targets by Maybeck and Worsley [156, 229]. An apparently related

target model concept proposed by Bishop [32] is his "coordinated turn" model, which

provides for an aircraft target to make planar turns with constant lift and "longitudinal"

(thrust less drag) force magnitudes.

Finally, we consider measurement noise models. For most radar tracking applications,

this issue reduces in practice [35:148] to a selection of measurement noise covariance R for

discrete time white Gaussian noise added to position and velocity measurements of the

form in Eqn. (2.15). It should be noted, however, that radar measurement noise is in fact

often highly time-correlated, since the noise is a function of the spatial relationships of

the tracking radar and the target scatterers [143] [35:161-162] - relationships which are

time- correlated by kinematics. One option in this case is to augment the state model with

additional noise states as discussed in Maybeck [153:180-185] - the fundamental problem

(for a conventionalradar tracker) here is that, to the extent that the noise state "dynamics"

model resembles the target dynamics model, false aimpoint motion from noise and true

target motion are indistinguishable (a classic state estimation observability problem).

2.3.2.2 The a-/3 and a-j%-7 Filters. The a-,3 and a-/3--y tracking filters

appeared respectively in articles by Benedict and Bordner [24] in the year 1962 and Simpson

in 1963 [201]. Neal [171] showed in 1967 that these fiters could be interpreted as steady-

state Kalman filters. Subsequent developments can be traced in [84, 85, 50, 10].

The a-/0 and a-03-7 filters are distinguished from Kalman filters in that measure-

ments and states in each of two or three dimensions (as required for earth surface or

submarine/aerospace tracking, respectively - henceforth we will consider only the three

dimensional case) are considered independently, and measurements are provided for posi-

tion only, corrupted by discrete zero-mean white Gaussian noise. Since the dimensions are

considrered independent!y, the nonlinear measurement equation option as used in the ex-
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tended Kalman filter (see Eqn. (2.15)) has no counterpart in the the a-0 and a-f3--y fiters.

Thus, the a-#3 and a-/3--y filters prescribe independent measurement equations for each

spatial coordinate (orthogonai x-y-z or range-azimuth-elevation) of the form Eqn. (2.6),

where H = [1 0 0], and the update equation is written as in Eqn. (2.9), with:

K(t)= ]T- (2.27)
T T 2

where T = (tj+j - ti) is the measurement update time interval, and K(ti) is written as

a transposed column vector. For particular stochastic driving noise assumptions, explicit

equations have been derived for analytical or numerical solutions to a, 03, and (where

applicable) 7 (see refs. in previous paragraph).

Considering the hierarchy of choices available for target tracking (the extended

Kalman filter, the a-/3 and a-/3-y filters, and finite memory/fading memory filters [154]),

Chang and Tabaczynski [50] found the extended Kalman filter in general to be the best

choice if computational requirements are not too severe, followed in desirability by the

a-03 and a-,3-7 ifiters for use in cases where computation is severely limited but degraded

performance is acceptable. The author does not intend to make use of these filter forms:

a-0 and a-,3--y filters are mentioned here only because they were enccruntered in related

works by other authors, to be discussed later in this chapter.

2.3.3 Tracking with Kinematic and Signature Measurements. Developments in

this relatively new field have taken two fundamentally different directions - these may

be characterized as solving problems in (1) fire control, predicting future position of a

moving target to provide a gun aiming solution, or (2) observation-to-track assignment,

as performed in a target acquisition and surveillance system to assign observed targets to

existing tracks. Both approaches will be discussed.

The factor common to all techniques discussed in this section is that they fuse kine-

matic and feature observable information for tracking, or kinematic (principally transla-

tion) state estimation. Other tracking techniques using dynamic programming will be

discussed in later sections of this chapter. In the next chapter, these existing approaches
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can be contrasted to the author's research, which combines kinematic and feature observ-

able information using approaches from this section and dynamic programming techniques

for object or target recognition.

2.3.3.1 Fire Control - Approach by Kendrick, Maybeck, and Reid, and Fur-

ther Developments. All developments in melding kinematic and feature observable

measurements for fire control appear to stem from an observation by Reid [120:iii] in the

mid-1970's that target/aspect angle classifiers could help predict the motion of an aircraft

target by identifying the orientation of the plane of the wings relative to the velocity vec-

tor. Kendrick, Maybeck, and Reid [120, 1211 then developed a tracker that employed two

coupled Kalman filters: one filter providing a target orientation estimate based on imaging

sensor measurements, the other filter providing kinematic state estimates from kinematic

measurements and (from the orientation filter) direction (but not magnitude) of "normal

load acceleration" (acceleration from lift, normal to the velocity vector).

Subsequent developments of the fire control problem were made almost exclusively

by Andrisani et al. [5, 4] and Sworder et al. [140, 141, 208, 209]. Contributions by An-

drisani et al. were twofold: (1) an improved dynamics model for conventional aircraft that

employed the coordinated turn assumption and included both kinematic states and aspect

angles in the extended Kalman filter state equations, producing one fiter rather than two

coupled ones, and (2) extension of the dynamics and measurement models to the case of

a helicopter target. In particular, the Andrisani efforts use image-derived orientation to

estimate not only direction of normal load acceleration but also its magnitude. Sworder et

al. investigated designs for improved tank gunnery against moving ground targets (prin-

cipally tanks), where the observation by Reid noted above does not apply. Notably, the

original estimator form by Kendrick et al. continues to be employed in current research,

as seen in recent work by Dayton et al. [63].

With reference to the discussion in Sect. 2.3.1.2 on acceleration inputs by the aircraft

pilot, the motivation behind both the Kendrick and Andrisani-type estimators was really

input estimation for aerodynamic forces - those forces being most significant with respect

to changing the curvature of the trajectory. Differences between the estimated acceleration
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and the true acceleration were represented by linear white Gaussian noise-driven processes

analogous to those discussed in Sect. 2.3.2. Further development of this concept, apparently

not yet pursued, might explore sensor-tracker issues arising from sudden changes in thrust

(e.g., changes from cruise to afterburner thrust or back, as revealed by sudden changes in

target infrared intensity).

Eagle et al. [75] have proposed and investigated a version of the Andrisani estimator

using regression dynamics techniques to estimate target parameters for improved tracking

and possibly target recognition. In Chapter IV the author will propose a third form of

kinematic/aspect-angle filter for use in target recognition, using classical multiple model

residual analysis-based parameter estimation techniques [154:129-136] to provide proba-

bilities of target class membership.

Dynamics and measurement equations for the Kendrick and Andrisani estimators

are presented in App. C. The form of the Kendrick estimator is illustrated in Fig. 2.4.

The unconventional structure of the Kendrick estimator makes it necessary to provide

a short explanation of the sequencing of its operations. Basically, at measurement times,

the aspect angle filter is provided with two measurements - a "pose estimate" provided by

an image processor, and a "pseudo-measurement" calculated from the propagated target

kinematics (discussed in the following paragraph). The aspect angle filter then outputs

an estimate of the target aspect angle. Subsequent processing in effect rotates this aspect

estimate around the target body pitch axis (nominally, the axis of the wings - see Fig. 5.23)

back toward the velocity vector by an angle of attack calculated from the lift magnitude

(derived in turn from the kinematic estimate, as in the following paragraph). The resulting

orientation of the plane of the wings is taken to indicate the direction of the normal

aerodynamic forces (lift, under these assumptions). This direction information is provided

to the kinematic filter, which also receives classical range, range rate, angle (i.e., sensor-

target pointing angle), and angle rate measurements, as provided by a radar and/or some

other sensor suite. The kinematic filter provides an updated kinematic estimate, which is

propagated conventionally to the next update time, and the cycle begins again.
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Figure 2.4. The Kendrick-Type Kinematic/Aspect-Angle State Estimator

The pseudo-measurement of target aspect angle is based on the assumption that

target acceleration normal to the velocity vector is due only to lift and gravity, and that

there is no sideslip (component of velocity normal to the body frame ib - ib plane :

see Fig. 5.23). Target acceleration normal to the velocity vector is available from the

filter, the direction and magnitude of gravity are well known, the normal acceleration due

to aerodynamic forces is assumed due to lift only, and target mass is assumed known.

The standard equation (see Sect. 5.5.3) for lift magnitude as a function of air density,

velocity, coefficient of lift, wing surface area (the latter two quantities assumed known for

a given target class), and angle of attack then yields the remaining unestimated value -

the target's angle of attack. Thus the velocity vector, the direction of normal aerodynamic

forces, and the computed angle of attack now completely specify the estimated target

orientation relative to the inertial frame, or, with simple coordinate transformation, the

pseudo-measurement of target aspect as seen from the attacking aircraft.

2-37



Completing the discussion of target models begun in Sect. 2.3.2, we note that the

Kendrick estimator uses a dynamics model for normal load (lift) acceleration that, unlike

the Singer approach discussed in the earlier section, is biased to provide a higher probability

of "upward" acceleration - that is, acceleration due to positive lift, or positive angle of

attack. This reflects the realistic desire of pilots to accelerate in a direction they can

observe, and to take the resulting acceleration load down into the seat, which is both more

acceptable to human physiology and more easily compensated, as by a "G-suit" and/or

isometric exercise-like exertions.

This filter system would be expected to provide robust performance for trajectory

changes due to rolls, for constant angles of attack. However, because angle of attack is

always computed as a function of velocity and acceleration magnitude from the kinematic

filter, this system should have problems responding to sudden normal load acceleration

magnitude changes resulting from pitch maneuver/angle of attack changes by the pilot.

Apparently, consideration of this issue prompted the subsequent development of the An-

drisani filter [5].

The form of the Andrisani estimator is conventional, since this estimator consists

of one rather than two coupled Kalman filters. The form of the Andrisani estimator is

illustrated in Fig. 2.5.

A key factor in both the Kendrick and Andrisani approaches is the assumption that

the atmosphere is considered at rest with respect to the inertial frame. This is a significant

assumption, since many of the other assumptions (i.e., zero sideslip angle) are in fact

wind-relative. To the extent that target-local wind velocity relative to the inertial frame

is known, compensation is straightforward [79] - the remaining uncertainty contributes to

a form of directionally-dependent bias error falling within the class of errors which should

not pose a great problem for the proposed methods.

In contrast to the Kendrick and Andrisani methods, Sworder [140, 141, 208, 209] by

necessity took an entirely different approach, although his motivation was much the same.

Like Kendrick and Andrisani, Sworder wished to use the imaging sensor basically as an

input estimator - estimating the lateral (right-left steering) acceleration input u(t) for the
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Figure 2.5. The Andrisani-Type Kinematic/Aspect-Angle State Estimator

state equation (Eqn. (2.14)) in an extended Kalman filter which processes also the usual

kinematic measurements. However, for the ground targets of Sworder's concern, simple

orientation is no longer sufficient to indicate acceleration unambiguously - to estimate lat-

eral acceleration here we must measure the change of orientation over time. Sworder et al.

attack this problem using the theory of marked point processes, as defined by Snyder [205].

Equations relevant to their approach are given in App. C.

It should be noted that use of the Sworder approach for gun lead angle estimation

against tank targets may have a practical shortcoming which is not mentioned in the

published references [140, 141, 208, 209]. In the case of typical tank-to-tank engagements

at ranges of one to three kilometers, where the Sworder estimator ultimately is trying

to calculate a lead angle for a tank main gun trajectory solution, it is likely that the

target tank also will be attempting to acquire and engage targets of his own. This means

that the target tank's turret will be moving, usually under two-axis stabilization, quite
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independently in orientation from its hull (i.e., the propulsion system). Since modern tank

turrets are so large relative to the hull, and since the hull is more likely to be hidden by

terrain, it seems quite likely that turret orientation will drive the image-based orientation

estimator. Therefore, the use of these orientation estimates for target (hull) trajectory

estimation could be misleading - in particular if the crew of the target tank know that

they can confuse enemy fire control by uncoordinated motion of their turret and hull. The

key point here is that when the relationship between kinematics and aspect angle breaks

down, measuring the latter may not help to estimate, let alone predict, the former.

Concluding this discussion of target trackers fusing kinematic and feature observ-

able measurements, a series of diagrams is presented to show how these systems and their

functioning can be represented using the concept of the hypothetical aspect angle sphere,

as shown in Fig. 1.2. Figure 2.6 illustrates the target information used and produced by

Kendrick et al. [120, 121] and subsequently by Andrisani et al. [5]. Each circle represents

the boundary of a particular 3-D target model sphere, the hypothetical aspect angle sphere

centered on the defined centroid of a particular target model. On the spheres are inscribed

paths which correspond to aspect angle histories over time. There are fundamentally four

different kinds of aspect angle angle history - true, feature observable-based, kinematic

estimate-based, and multi-sensor estimate-based. Marks recorded along the path corre-

spond to particular times at which we synchronize measurements and estimates.

Consider the topmost target model sphere - Model (1) - in Fig. 2.6. The path

marked with X's (crosses) is the true aspect angle path - specifically, the path inscribed

on the surface of the target model sphere at the point of intersection of the sphere surface

and the vector from the center of the target/sphere to the sensor (see Fig. 1.2). The

set of (true) feature observable values corresponding to any point along this path can be

described uniquely as a function of azimuth and elevation angles relative to a target-model

body coordinate frame. The angular "roll" dimension about the vector is unimportant

here because we consider only (in-plane) rotation-invariant feature observables (should this

target/sensor-relative "roll" become critical for a particular sensor, it could be considered

in defining true or expected signatures). In any given engagement, this true path defines

the set of feature observables which would be observed with perfect measurements. Note
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Figure 2.6. Aspect Angle Information Fusion in the Kendrick-Type Estimators
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that, in any single engagement (one target), there is only one true aspect angle path -

corresponding to the true model out of (say) J possible models.

The path marked with o's (circles) is the feature observable-based path, or pose

estimate history. This is the aspect angle path that would be calculated (estimated) for

any given target model using the set of corrupted measurements extracted by viewing

the true model over the true path with an actual sensor. As discussed in Sect. 2.2.1,

for any given measured feature observable value, the corresponding aspect angle or pose

estimate is extracted from each model or associated signature library, generally using

nearest neighbor or lookup techniques. Probabilistically, this aspect angle (state) estimate

in general represents argx.{max[p(z! I Xa)]}, that is, a maximum (classical) likelihood

estimate of the aspect angle x' for some feature observable measurement zt, where the

superscript f denotes "feature". Aspect angle estimates from kinematics would be used

at most only to start the search in some acceptable local neighborhood - to prevent the

algorithm from defining an obviously incorrect aspect angle, often due for example to

planes of symmetry which give nearly identical feature values for aspect angles differing

by 180 degrees.

Note that, if the (true) target model from which the measurement is extracted is

identical to the (test) target model from which the corresponding aspect angle is sought,

then there are only three reasons for an incorrect aspect angle determination: (1) pro-

duction of ambiguous (ill-defined, as for the visual image of a sphere, or noisy, as for

radar scatterer interactions) signatures at the target, (2) transmission noise, and (3) sen-

sor noise. Thus, for low-ambiguity signatures and low transmission/sensor noise, the true

aspect angle path and the feature observable-based aspect angle path on the correct model

should not differ greatly. However, if the true model and the test model differ, that model

mismatch provides an additional source for error in the feature observable-based aspect

angle path, as represented in the center diagram, Model (2), of Fig. 2.6. Finally, one

can envision cases (e.g., Model (3) in Fig. 2.6) in which severe mismatch between true

and test models results in a feature observable-based path that resembles a random walk

over the surface of the target sphere, perhaps not a reasonable aspect angle path in any

sense. Clearly, severe measurement-to-test model mismatches may provide grounds for
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terminating determination of a feature observable-based aspect angle path early in the

process.

The path marked with squares is the kinematics-based aspect angle path. This is

the aspect angle path that would be expected, given kinematic estimates as provided

by a sensor/estimator suite measuring kinematic variables only (principally position and

velocity), with additional information on dynamic limitations of each target model. In the

aircraft tracking work discussed here, these dynamic relations are the basic coordinated

turn, lift (lift normal to velocity vector, nearly normAl to wings), and angle of attack

(alpha nearly proportional to magnitude of lift, inversely proportional to speed squared)

assumptions found in Kendrick et al. [120:11] and elaborated by Andrisani et al. [5].

The path marked with ellipses is the multi-sensor estimate-based ("fused") aspect

angle path - an aspect angle path based on some optimal estimator using both kinematic

and feature observable measurements. If we use the correct model as in the top diagram

in Fig. 2.6, it would be reasonable to assume that the fused path will fall between the

kinematic path and the feature observable path, or, for small (or at least unbiased) sensor

errors as shown, closer to the true aspect angle path than we could achieve with kinematic

estimates alone. But if we choose the wrong target model, the fused aspect path could

easily be a poorer estimate than provided by the kinematic path alone. Thus, the Kendrick

estimator and its derivates should be very sensitive to proper choice of target model - the

research demonstrated in Chapter IV exploits this sensitivity.

The preceding discussion spans the extent of solutions for the fire control problem

by fusing kinematic and feature observable information. Developments discussed below by

authors other than Kendrick et at., Andrisani et at, and Sworder et at. have been directed

instead toward observation-to-track fusion.

2.3.3.2 Observation-to- Track Assignment: Approach by Bar-Shalom. Bar-

Shalom's probabilistic technique for observation-to-track fusion, called Joint Probabilistic

Data Association (JPDA) in its latest form, is a method for updating a set of kinematic

track files where several observations can be associated with any given track [33:299-

304] [10, 8]. Fundamentally, the method assigns to each observation within some predic-
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tion "gate" (i.e., a region in space around the nominal predicted position for the next

observation) a probability that that observation is the correct one. This probability is a

function of the distance of the observation from the anticipated new observation position,

as based on propagation of the track state vector from the last update to the current time.

Finally, the existing track is updated by a "pseudo-residual" constructed as a linear com-

bination of all the residuals (differences between each observed possible position and the

predicted position) in the prediction gate, each weighted by its probability of association

to the existing track.

Bar-Shalom's writings discuss this fact only briefly [10:229], but the JPDA structure

is inherently well suited to incorporating information from feature observable measure-

ments. Instead of, or in addition to, weighting the probability of correct association based

on spatial distance from each observation to the predicted nominal new location, one could

weight each observation probabilistically based on its distance from the previous track in

feature (observable) space.

2.3.3.3 Approach by Blackman. Blackman's approach to fusion of kine-

matics and "attributes" [8:205-209] [33:376-380] is apparently derived from the approach

taken by Bar-Shalom, and represents one manner in which Bar-Shalom's recommendations

could be implemented. Blackman's approach is summarized by the equation below (shown

here exactly as it appears in [8], except that Blackman uses a capital Z, which in the nota-

tion to be introduced in the following section will mean a measurement history of several

measurements over time, rather than one measurement, as Blackman intended):

Ii PD ) ((d j ) (P(z, I ii)) (2.28)P' = (27r)Mjj/2 V1 So G

in which Pij is the probability that observation j belongs to track i, PD is the probability

of detection, dij is the quadratically-weighted distance (i.e., d, 2 where t:j is a

measurement residual vector) from observation j to the predicted nominal location for the

next observation of track i in M5j-common dimensional space (M1 j is the dimension of the

intersection of the measurement and track spaces), and Sij is the covariance of the estimate
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for the predicted nominal. Vr is a "measurement volume" difference parameter attempting

to quantify the magnitude of the mismatch in spatial dimension and size between (1) the

space observed by the sensor taking measurement j and (2) the space traversed by track i

to be updated (for example, quoting Blackman [8:205-206], "given an angle-only track and

a radar measurement that includes angle, range, and range rate, Vij is the extent of the

range and range-rate measurement space"). Finally, P(zj I ii) is an "attribute likelihood

function," giving the probability that the feature observables for the new observation could

have the values zj measured for observation j, given the predicted feature observable values

i• for track i.

Although it appears that Blackman intended to use Pij as a weighting factor in

the Bar-Shalom fashion, it should be noted that this quantity could be used to define a

"nearest neighbor" or "maximum likelihood" association technique as well, assigning the

single observation j to that track i for which Pij is greatest. In any case, Blackman's

approach appears highly heuristic: it is related to, but does not appear to be explicitly

derivable from, maximum likelihood methods.

2.3.3.4 Approach by Mitzel. Whereas Bar-Shalom and Blackman took

a probabilistic or statistical approach to observation-to-track fusion, fusing information

from multiple observations into one track, Mitzel's approach [8:297-320] is a classic near-

est neighbor approach. Mitzel defined an augmented vector consisting of four kinematic

states - position and velocity in each of 2 dimensions - followed by a set of m global

descriptor feature observable quantities. The kinematic states are updated in an a - 3

tracker, but the feature observable quantities are treated as constant with no driving noise,

and updated using the simple "static estimator" form of the linear Kalman filter [153:9-

15], under the assumption that the feature observable measurements are corrupted by

discrete-time white Gaussian noise.

For each observation in a track gate defined by the kinematic estimate covariance,

Mitzel defines an augmented vector of the same form as that maintained for the track itself.

Propagating the track forward to the measurement time, Mitzel then simply determines

the "nearest neighbor" observation to the propagated track vector. His distance metric
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is Euclidean in the 4 + m dimensional augmented vector space, weighted only by the

covariance of the vector elements (due to the dimensional independence assumptions in the

a - 0 tracker structure and and Mitzel's assumed independence of feature observables and

kinematics, the only non-zero off-diagonal covariance elements are those relating kinematic

states in any one dimension).

The implicit assumption of independence between kinematics and feature observables

made by Mitzel was viewed by the author as a significant limitation to the performance

of this algorithm. The original motivation for the start of this research was a desire to

improve upon the assumptions in the Mitzel effort.

2.3.4 Object Tracking/ State Estimation - Conclusion. With the end of this sec-

tion, this chapter has covered nearly all of the previous or classical approaches to physical

object or tactical target recognition and tracking. From this point on, we will introduce

ideas that are new, or at least unconventional, with respect to these classical approaches.

The eventual intent is to apply these new ideas to dynamic object recognition, in particular

for moving objects.

2.4 Sequence Comparison by Dynamic Programming

This section introduces the mathematics of sequence comparison by dynamic pro-

gramming methods. A central focus of this research is the use of dynamic programming to

compare (1) measured sequences of feature observables from an unclassified object against

(2) candidate sequences or regions from potential or known object classes. The output

of this comparison process will be a set of likelihood function values, or measures of the

likelihood that the observed sequence was generated by each of the candidate objects.

Recalling the discussion on "independent look" pose estimates in Sect. 2.2.1, we in-

tend to show that dynamic programming sequence comparison methods offer a natural

method to restrict pose estimate histories to reasonable aspect angle progressions, in ac-

cordance with other information about candidate object classes. In the following section,

we will see why this restriction improves object recognition.
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2.4.1 Dynamic Programming. Dynamic programming (DP), sometimes called the

"shortest path algorithm," is a technique developed by Bellman [23] for making optimal

decisions with minimum effort, where we define optimal as "minimum cost," according to

some specified cost criterion, or "minimum expected cost," where stochastic effects result

in some non-zero probability that our decisions will not be implemented as we intend [155,

71, 67]. In practical use, dynamic programming is often presented as a tool to find a

minimum cost (length) path through a sequence of discrete states at discrete times, as

shown in Fig. 2.7, where each "branch" in the lattice represents a state transition carrying

a given cost, and the total cost of a path is the sum of the cost of the individual steps.

It is important to note here that the term "state" carries a distinctly different conno-

tation in dynamic programming than in general estimation and control practice. A "state"

in DP is generally a discrete location or point in some generally continuous, multidimen-

sional state space, rather than a particular dimension in that state space, as is the usual

meaning in estimation and control. This distinction arises because DP is only practical

where a continuous state space can be discretized to define a finite (therefore countable)

number of locations.

The inelegant (maximum effort) method of solving the problem presented in Fig. 2.7

would be by exhaustive search, i.e., to determine the cost of every possible path through

the lattice, and select the path of least cost. However, if our system conforms to Bell-

man's "Principle of Optimality," then dynamic programming may allow us to determine

the minimum cost path without considering every possible path. For backward dynamic

programming, a classical tool in control applications where we wish to determine the

minimum-cost sequence of state transition decisions required to reach a given final point

from a given start point, the Principle of Optimality states that (fron [71:3], with modi-

fication to emphasize that this is a property that a system must be known or assumed to

have in order to use dynamic programming, but may not have in actuality):

The best (minimum cost) path from A to D must have the property that,
whatever the initial decision at A, the remaining path to D, starting from the
next point B after A, must be the best path from that point to D.
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Figure 2.7. A Minimum Cost Path Defined By Dynamic Programming
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If this is true, the second (and last) key idea of backward dynamic programming is

that the optimal path/control sequence is solvcd by working backward from the desire.,d

endpoint to the beginning, recording the minimum cost decision for each state as we go

(this recording process is often referred to as the setting of "pointers"). At the beginning

point, we then retrace our steps through the stages (generally, state/time combinations)

back to the end to find the optimal path.

A straightforward extension of backward dynamic programming leads to forward

dynamic progranmning [71:10-11], the form commonly used in sequence comparison. For

forward dynamic programming, executed in the reverse direction with respect to the pre-

vious paragraph, the Principle of Optimality states (with reference again to Fig. 2.7):

The best (minimum cost) path from A to D must have the property that, for
any point C along that path before D, the best path from A to C must lie along
that best path from A to D.

Using these rules, the challenge in using dynamic programming for any particular

application is to determine the incremental costs, transition rules (since not all paths or

transitions may be allowed), and (for stochastic problems) transition probabilities - i.e.,

the probability that a given transition will be executed, given that that transition or some

other one was chosen. Limiting the usefulness of dynamic programming, however, is the

"Curse of Dimensionality," [67:41, 75-76] - as the number of possible states and/or times

grows, the number of possible paths (dimensionality) grows explosively. Although dynamic

programming requires the consideration of fewer paths than exhaustive search, there is still

a price to be paid, and that price can become prohibitive.

2.4.2 Dynamic Time Warping for Speech Recognition. The technique of dyna. ic

time warping (DTW) was born from the observation that the utterance of spoken words is

a stochastic process - no two persons pronounce the same word identically, and, moreover,

the same person does not pronounce any given word exactly the same on any two occasions,

due to a variety of factors (level of stress, word context, etc.). It was further reasoned that

a considerable portion of the difference between any two utterances or realizations of a

given word could be charged to stretching (expansion) or compression of portions of one

utterance relative to the other, or possibly to addition or deletion of relatively minor
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sounds. If the effects of these differences could be eliminated, or "time warped," so the

idea went, the underlying similarity of the two words could be revealed.

With this objective, the concept of using dynamic programming for time warping and,

by extension, speech recognition, first appeared in the open press in 1970-71 in articles by

Velichko [214] and Sakoe and Chiba [192]. Subsequent research in this field was conducted

and published by Itakura [115], White and Neeley [223], Sakoe and Chiba [193], and

(leading efforts in this country) Rabiner et al. at Bell Laboratories [182, 183, 168]. Texts

by Parsons [176] and Sankoff and Kruskal [195] are useful references.

Explanations of dynamic time warping and dynamic programming-based sequence

comparisons in general require the use of a diagram like Fig. 2.8. Each axis of the diagram

represents a sequence of twelve elements that is to be compared to the other sequence

of twelve elements - the circles represent possible (but perhaps forbidden) associations

between the elements. The nature of the elements is completely general - often they are

vectors of some form, but all that we will require is that some distance metric exists by

which one element can be compared to another.

Often, each element represents a discrete, sampled data representation from some

feature space. The features generally represent observable quantities due to a physical (i.e.,

classically continuous) process or trajectory in some state space, where the true location

in the state space at any time is unknown - the distinction between the state space of this

trajectory and the feature space of the observables is an important one, and not always

clcar in the literature (see discussion in Chapter I of [195]). Note that, in general, the two

sequences need not contain an equal number of points.

The "warping" or sequence comparison is really a process of making associations

between individual elements in the two sequences, computing the cost of each association

according to the distance (measure of dissimilarity) between the element in one sequence

and the element in the other, and finding the set of associations or matching path that

gives the minimum total cost or distance. Associations are made subject to "continuity

constraints," that limit, for example, the number of associations that can be made from

one element of one sequence to elements of the other sequence, the number of elements
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Figure 2.8. Classical Dynamic Time Warping

in a sequence that can be skipped (if any), matching paths that move to the left or down

(generally, these paths are prohibited), and so on. Continuity constraints prevent undesir-

able low cost associations between two sequences that really have significant differences,

and they lower the risk of incurring the Curse of Dimensionality (see previous subsection).

For example, in Fig. 2.8, the dotted lines represent global continuity constraints, or

bounds on the region of admissible paths - we have chosen not to allow or consider, for ex-

ample, association of element al0 with element b2. As an example of an undesirable low cost

association path, suppose that all of the elements in sequence B = {bI, b2, b3,. . ., b12} are

"closer" or more similar to element a, than to any other element in A = {a,, a2, a3 ,. . ., a 12}

in some chosen metric. This means that the (unconstrained) association path between A

and B will be a vertical line segment through the leftmost column of circles. But sup-

pose that the analyst is absolutely sure from some other source of information that a,

cannot possibly correspond to, say, b3 and above - continuity constraints can prevent this
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"impossible" match and force the system to output a warping path cost which is more

representative of (if not explicitly giving) the probability that sequences A and B arise

from the same underlying space.

Conversely, the global constraints in Fig. 2.8 show that we have chosen to require the

association of the first and last elements of each sequence with the first and last elements,

respectively, of the other. The local continuity constraints for this diagram are shown in

the extracted portion on the right - the arrows indicate that allowable paths into any

association cell can only come from the left, lower left, or lower cell. This simple local

constraint is the most common of many alternatives [195:1361.

A final form of path constraint for which numerous alternatives have been proposed

is path distance weighting. The reader will observe that a straight (diagonal) path through

the array in Fig. 2.8 will contain fewer elements, and therefore a lower total path cost if

this total cost is a simple sum of individual association costs. For some applications, the

designer may wish to relax this preference for diagonal paths, and may provide de-weighting

or "edge-weighting" techniques to make non-diagonal paths more feasible. For example,

considering the simple local constraint discussed above, one may choose to weight costs

from horizontal and vertical transitions by a multiplicative factor of -, while costs from

diagonal transitions are unweighted. This form of weighting (discussed in [195]) tends to

make warping paths that move horizontally, then vertically (or vice-versa) just as feasible

as those that move diagonally.

In Fig. 2.8, then, the solid line represents the minimum cost sequence of associations

between the elements of the two sequences A and B, subject to these global constraints,

and possibly other constraints that need not be specified explicitly for this example. This

is a minimum cost path through the space of associations, subject to transition constraints,

and forward dynamic programming provides a natural approach to determine this path.

Note that backward dynamic programming would be equally applicable, but researchers

in this field prefer to start associations from the beginning rather than from the end -

working forward allows one to attempt to work in real time, and word beginnings are also

generally more distinctly spoken and identifiable than word endings.
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Thus, for the simplest form of local continuity constraint, allowing diagonal, vertical,

or horizontal associations, but no additions or deletions (skipping an element of one or the

other sequence) as shown in Fig. 2.8, the forward dynamic programming equations can be

written and executed from left to right as:

D(Cj,) = d(Ck) + MIN[D(CkI)] (2.29)

where:

c, = [ai, bl] is the k-th element in a sequence of allowable associations of elements

from sequence A with elements of sequence B, this particular association being between

element aj and element b,

Ck = {lC, C2 , c3 ,. .. , -k}, the minimum cost sequence of associations leading to and

including association ck

d(ck) = the cost or distance of association ct, i.e., the distance in some metric between

element a. and element b,

D(Ct) = the total cost of reaching and accomplishing association cA, by the minimum

cost sequence of allowable associations

It is important to point out that, for sequence comparison in general and speech

recognition in particular, there is no body of theory prescribing optimum feature space

representations, distance metrics, or path constraints. These choices have been the sub-

ject of much experimental research, without identification of one particular "best" ap-

proach [176:297-303] [223:186-187] [168:634] [195:125-161], although various researchers

have preferences for certain approaches in particular cases, e.g. [115] [195:37-40].

The key point here is that, in contrast to dynamic time warping, for motion warp-

ing, or the application of dynamic programming sequence comparison in dynamic object

recognition, the dynamic state restrictions of each object class can determine natural rela-

tionships that provide for continuity constraints to be defined analytically. These continuity

constraints are just ezactly the restrictions on pose estimate transitions that were motivated

in Sect. 2.2.1.
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2.4.3 General Sequence Comparisons. Apart from application in speech process-

ing, dynamic programming-based sequence comparisons have seen use (and independent

origins) in a wide variety of fields, as discussed in [195]. These fields include chromo-

some comparison, dendochronology (archaeological dating by tree ring analysis), bird song

comparison, recognition of partial images (by Gorman et al. [101], to be discussed in the

following chapter) and so on.

An extensive literature search, however (see bibliography), has failed to find any use

of such classical sequence comparison techniques for recognition of moving (changing aspect

angle) objects. Telephone conversations with Gorman [100] and Rabiner [180] support this

observation. In Chapter III, it will be shown that some published dynamic programming-

based techniques for trajectory estimation [129, 66] and object recognition [136, 164, 165]

can be viewed as sequence comparison techniques. This research serves in part to fold

these and other methods into the larger class of algorithms for sequence comparison by dy-

namic programming. Application of the classical sequence comparison techniques discussed

above and other aspects of this research will considerably widen the range of approaches

for dynamic object recognition - any of these sequence methods can provide significant

performance improvements over the conventional "independent look" methods discussed

in Sect. 2.2.1.

In this research, we will use the term "warping path region" or "space" when referring

to the finite set of all possible associations between elements of two finite sequences of

feature observable vectors, from which sets of associations may be defined under applicable

rules to define warping paths. This warping path space is illustrated in Fig. 2.8, for warping

of two one-dimensional sequences (producing a "two-dimensional" warping path region or

space).

In a key generalization to basic DTW sequence comparison, we may conceive of the

need to match a one-dimensional measured sequence with a two-dimensional origin region

of possible sequences on some model. Fig. 2.9 illustrates the three-dimensional space of

allowable matching paths that results from this matching of a one-dimensional sequence

with allowable paths through a two (angular) dimensional aspect angle region, as opposed

to the two-dimensional space of paths portrayed in Fig. 2.8.
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Figure 2.9. Motion Warping in a Two-Dimensional Aspect Angle Region
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The one problem with this approach is that we are more likely to run afoul of the

"Curse of Dimensionality" [23, 71, 155] by allowing for a "three-dimensional" space of

paths. Otherwise, the extension to this technique, using somewhat more elaborate three-

dimensional continuity constraints, will be straightforward. The continuity constraints

for this approach - the width of the allowable path region, lateral (as opposed to along

the nominal direction) path transition rules, and so on, can be defined similarly to those

discussed above.

Note that each point in warping path space is really an association between two points

in the feature observable space. These feature observable values may arise from different

points in the underlying state space (which will be aspect angle, in our case), but the

association cost is based only on the difference in feature observable values. The continuity

constraints of classical sequence comparison methods may modify these association costs

to deter or prevent matches that appear to be too far away in a state space sense (i.e.,

separated by too many sequence elements). However, the sequence matching cost is not

explicitly weighted by any factor arising from other knowledge that may be available about

transitions in the state space which produces the measurements. To do that, we will apply

the following dynamic progranmuing state estimation algorithm - a unique form of dynamic

programming sequence comparison, but one not heretofore associated with the family of

classical DP sequence comparison techniques.

2.4.4 The Larson and Peschon (L&P) Algorithm. Larson and Peschon (L&P)

proposed a dynamic programming-based algorithm [1331 for estimating the sequence of

n states or locations in some space with maximum a posteriori or MAP probability of

producing an observed sequence of n measurements, conditioned on a priori information

about the likelihood of transitions in the state space. They did not motivate their work

as a tool for object recognition working on an aspect angle space, but we will ultimately

apply it in this fashion. We will discuss this algorithm, and later illuminate the relation-

ships between it and the classical dynamic programming sequence comparison techniques

discussed above.
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Given a sequence of measurements Zk = {z1 , z 2 ,. . . , zk, Larson and Peschon de-

sired to find the sequence of states Xk/k = {XO/k, ql/k, x2/k,..., xi/k} that maximized the

conditional probability density function:

MAX [p(xo,xl,...,xt I z 1 ,...,z•)] = MAX [p(Xk I Zk)] (2.30)
Xk Xk

where the term "MAX" refers to the operation of finding the maximum value of the indi-

cated term, over all values of Xk, representing the sequence of states {x 0 , x1 , x 2,.. . , xk}.

The a priori information as to the likelihood of transitions in the state space, as discussed

above, is represented as p(xk+l I xk) for any choice of k. Note, as do Larson and Peschon,

that the intent here is to estimate the entire sequence up to the present, rather than simply

the present state Xk.

Next, Larson and Peschon were willing to assume independence of measurements

z3 from states xZ and measurements z, for t, $ ti, implying, for example, that the time

interval required to take data for one measurement is less than, and synchronized with,

the loiter time in any one state, and that the measurement instrument is independent

from event to event. These assumptions are typical of discretization assumptions made to

implement dynamic programming algorithms in naturally continuous spaces, or to limit the

dimensionality of a problem in naturally discrete spaces (where a "coarser" discretization

than the natural level may be assumed to reduce computation).

These assumptions appear to be reasonable for object recognition algorithms in which

measurements arise from an aspect angle state space and sensors have high "bandwidth"

relative to the observable state transition processes. In other words, we expect the as-

sumptions to be appropriate where the sensors have shorter response times than the time

intervals over which the underlying state space is expected to change enough to alter the

"mean" signature - effects on signatures due to state changes over the time required to

make a measurement will be indistinguishable from the effects due to noise if there were

no state change. In Chapter III, we will discuss a particular case of interest to us in which

2-57



these conditions may not apply, and an approach by which the Larson and Peschon as-

sumptions might be relaxed to address this issue. It will be clear that the assumptions

made by Larson and Peschon above can be relaxed if required without destroying the utility

of their basic approach, but at the cost of increased dimensionality, in that probabilities or

likelihoods (costs, in the general dynamic programming sense) become path and/or mea-

surement dependent - this is what Larson and Peschon are trying to avoid through their

assumptions.

The extent to which discretization assumptions are reasonable or restrictive in any

particular scenario, however, must be evaluated on a case-by-case basis. This evaluation

can be conducted from first principles - assessing, for example as we did in the previ-

ous paragraph, whether or not in any particular state transition / measurement scenario,

assumptions like those of Larson and Peschon are reasonable. Alternatively in test and ul-

timately in practice, the evaluation will be done empirically - obtaining a problem solution

(a control law, a target recognition algorithm, etc.) under the discretization assumptions,

and assessing whether or not that solution provides acceptable performance when applied

to states and/or measurements from a continuous or more finely discretized "truth" sce-

nario. In general, as in sampling problems, the assumption of discretization becomes more

physically reasonable (if not more feasible computationally) as the discretization fineness

increases. Where an overall fine level of discretization leads to high dimensionality and

the "curse of dimensionality" becomes an issue, it may be reasonable to limit high dimen-

sionality or fine discretization to particular subsets of the space where the optimal answer

is expected to lie, perhaps using iterative solution processes to converge to an adequate

answer [155:239, 247, 256-257].

In any case, their assumptions allow Larson and Peschon to use Bayes' Rule and

break the maximization process into stages, making it suitable for solution by dynamic

programming with the following equations (use of w'ich will be discussed below):

p(Xk/k I Z) = MA { AX [P(Xk'Zk)] }
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MAX MAX [p(Xk I Z0)] MAX I(xt'k) (2.31)
Xk MAXI Ixkj k

which shows the final step in the process, a maximization of I(xk, k) over all possible final

states xk, where:

p(X,, Zk) = P(X, I z,) =-.Z I Xk)P(Xk I X- 1) P(Xk_,, Zk -) (2.32)

p(ZO) p(Zk I Zk-_) p(Zkl)

and:

I(xk,k) MAX [p(Xk I ZA)] (2.33)

Then, stepping theoretically to a hypothetical k + 1-st step:

SMAX rp(zk+1 !xk+1)P(Xk+1 Ixk)]

I(X,+l, k + 1) L M p(zIk+ I Xz) p(Xk I Z,) (2.34)

or, equivalently, in the recursive form which is the heart of the algorithm:

I(x,+, k + 1) = MAX [P(zk+1 I xt+l)p(xk+l I x,) I(x,,k)' (2.35)
'k + I p(z :+l I Z k) (

Since the factor p(zL+i I ZA) is the same for all maximizations made at any time tk,

the actual maximization at any stage need not be done over the term shown in brackets in

Eqn. (2.35), but rather only over the expression defined by computing this term without

its denominator, denoted I*(Xk+1, k + 1).

The above equations are used in a recursive forward dynamic programming procedure

which works as follows (from [133] with elaboration):

(1) Quantize the state space [x,t] to obtain a grid consistent with the accuracy requirements

of the problem. The italicized words are quoted directly from Larson and Peschon, and

speak to the potential pitfalls inherent in the discretization process. This implied warn-

ing is common to all implementations of dynamic programming for naturally continuous

processes, as noted above.
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(2) Initialize the (forward DP) iterative procedure by defining I*(xo, 0) = p(xo), the a

priori probability density for each possible discrete x at time to.

(3) For each quantized state x, (i.e., each possible discrete x at time ti), calculate I*(xi, 1)

from z1 and Eqn. (2.35), with appropriate subscript changes for stage 1, rather than k + 1.

(4) Write *0 (xz, 1) as the value of xo for which Eqn. (2.35) is maximized in the previ-

ous calculation (establishing "pointers" which will be retraced to find the optimum state

sequence).

(5) Repeat steps (3) and (4) at each sampling instant until the k-th instant is reached. Each

such iteration is one stage. This is the iterative forward dynamic programming procedure,

moving forward through successive stages to completion.

(6) Determine the modal trajectory Xk/k by first using Eqn. (2.31) to find ik/k (i.e., the

state with highest probability of being the terminus of the true state sequence) and then

iteratively retracing the pointers set up in step(s) (4), to find the optimal state sequence,

i.e., Xi/k = li(xi+l/k, i + 1).

Thus, the Larson and Peschon equations define a forward dynamic programming

algorithm for determining the one sequence of states IXk/k that gives us the maximum

likelihood of generating a set of measurements Zk, given some additional or a priori in-

formation p(xo) and p(xk+1 I xk) about the likelihood of starting states and transitions in

the state space.

2.4.5 Relating Dynamic Time Warping (DTW) and the LFAP Algorithm. Both

DTW and the L&P algorithm are DP sequence comparison techniques. The fundamental

difference between them is that DTW does not consider state (as opposed to feature)

transitions that occur off a single "one-dimensional" path in state space. In the usual

DTW case, we have little knowledge of the underlying state space - only examples of

the feature sequences produced by typical state trajectories. Observations from one state

trajectory are simply compared to observations from another trajectory, and "warped"

to allow for an optimal match. DTW generally attempts to associate an element of one

sequence with more than one element of the other sequence, leading toward a bias for

solutions that minimize the total number of associations.
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On the other hand, the L&P algorithm can use information known a priori, or

aside from the feature observations, about the likelihood of transitions in the state space.

This allows the L&P algorithm to "investigate" more than one state trajectory. The L&P

algorithm does not attempt to match more than one state space point with a given element

in the feature sequence, and thus has no "arithmetic" bias toward short paths in the state

space.

The drawback to the L&P algorithm is its "maximum likelihood" (ML) nature, ii,

the sense that, given a set of m observations, it finds the set of m discrete states most likely

to have generated the observations, subject to a priori constraints: p(xo) and p(xk+l Ixk).

It may be, however, that a state space region exists which has a higher overall probability

of producing the given observations, when all possible trajectories over time through that

region are considered. By comparison with a region chosen by the L&P algorithm, this

"better" region might have many points which are rather likely to have generated the

given observations, while the "L&P" region has a few well-positioned points which are

very likely origins, but many that are quite unlikely. The use of DTW in such a case,

forcing each point along a likely state trajectory to associate with an observation, could

select the "better" region instead of that selected by the L&P algorithm.

Unfortunately, while the L&P algorithm can use the (relative) computational econ-

omy of DP to find the ML sequence of states in a state space of arbitrary dimension,

the state space region with highest probability of generating the observed features can in

general be found only by exhaustive search. A set of nominal or a priori likely trajecto-

ries through the state space would provide a starting point for such a search with DTW

methods. Clearly, a reasonable choice for the most likely trajectory based on a priori

information is given by propagating the starting state and transition information used in

the Larson and Peschon approach through the state space, without considering feature ob-

servations at each step. In other words, we start with arg, 0 [maxX, p(xo)] and subsequently

pick argxA+,[maxxl+, p(xk+l I xk)] over all tk of interest. Chapters III and V will show the

application of these concepts in object recognition applications.

Like all forms of classical sequence comparison, the L&P algorithm and DTW are

fundamentally syntactic identification techniques. Implicitly, comparing two sequences
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(or, as we will see in the following chapter, comparing a sequence with a space of possible

sequences) using these techniques is a syntactic comparison process. We may not be able

formally to identify the root symbol, production rules and other syntactic descriptors, but

comparing the sequence terminals in proper order implies a comparison in some sense of

the syntactic processes which generated those sequences. Interestingly, in the case of the

L&P algorithm, we may note that the state transition likelihood quantity p(Xk+l I Xk)

and the measurement likelihood p(zk+l I x,+1 ) for all states of interest are explicitly a

production rule in the syntactic sense - for any one object class or grammar, they tell us

how a sequence of states becomes a sequence of measurements [90:541 [212:3181. In cases of

interest to us, the syntactic root symbols will be dynamic object classes exhibiting specific

state transitions.

2.5 Dynamic Programming in Object Recognition

The purpose of this section is to illuminate previous efforts in object or target recogni-

tion and tracking that employed dynamic programming. Here and in the following chapters,

these approaches will be contrasted with the author's research.

2.5.1 Conception and Development of Motion Warping. The fundamental in-

spiration for the research described in this dissertation was the observation that dynamic

programming-based sequence comparison techniques could be applied meaningfully to ob-

ject recognition using sequences of sensor signatures from a turning object, where (1) those

signatures were a function of the angular orientation of the object, and (2) a close relation-

ship exists between the object's translational and angular orientation states. The proposed

concept is referred to as "motion warping". In summary, the key to this formulation is

that we:

(1) Start with a potential object's underlying "feature observable surface," nominally a

hypothetical aspect angle sphere coordinatized in some two-dimensional (azimuth and

elevation) spherical coordinate representation (but, like the earth's surface, suitable for

analysis as a planar section over local regions), with each (angular) dimension coordinatized

linearly.
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(2) "Pre-warp" a one or two dimensional subset of that surface to make it appear as it

would to a sensor scanning it at locations and rates estimated from kinematics and object

dynamic restrictions.

(3) Compare the observed measurement sequence with the pre-warped surface subset,

treating the comparison as one of finding the most likely continuous path for the ob-

served sequence along the pre-warped surface, allowing for additional warping by dynamic

programming-based sequence comparison techniques (e.g., dynamic time warping, not to

be confused with the pre-warping process).

(4) Select, as the most likely object class corresponding to the observed measurements,

the potential object class offering the closest match between the observed sequence and its

pre-warped surface subset.

With this basic plan in mind, the author reviewed relevant sources on multisensor

fusion, object tracking, and pattern recognition to determine if the proposed concept had

already been investigated. Eventually, this research included all of the classified resources

available from the Target Recognition Technology Branch (WL/AARA [1661) of Wright

Laboratory at Wright Patterson Air Force Base, Ohio.

The first three of the sources discussed below (Kenyon, Gorman, and Amini et al.)

were among the first to be found and reviewed, and wpre readily eliminated from consider-

ation as competing research. The subsequent three sources (Larson and Peschon, Barniv,

and Kramer) served as inspiration for recent efforts by the author of the final reference

(Mieras et al.), whose methods approach but do not encompass the research described in

this dissertation.

Between Kramer and Mieras, however, we consider a much older (1978) reference

by Le Chevalier et al. of France whose concepts are very close to those of Mieras et al.

and similarly approached (particularly in philosophy), but did not encompass, the author's

concepts. These two final authors, Le Chevalier and Mieras, are the only sources found

whose concepts resemble motion warping to any meaningful degree, so their efforts are of

particular interest.
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In the next chapter, we will see that the efforts of Le Chevalier and Mieras can be

posed as suboptimal versions of the methodology pursued in this research. This research

serves to generalize and significantly extend their groundbreaking efforts.

2.5.2 Previous Developments by S. Kenyon. In a 1988 article [122] in the Pro-

ceedings of the 1st National Symposium on Sensor Fusion [42], Kenyon proposed to use

dynamic programming with object kinematics and attributes in an objective function to

match observations with track files. Thus, the intended use of the proposed system was as

for the systems proposed by Bar-Shalom, Blackman, and Mitzel in Sect. 2.3.3 (see refer-

ences there). Since the Kenyon article was not specific as to how dynamic programming

was employed, Kenyon was contacted telephonically [123] and was asked, after a short ex-

planation of the proposed research, if his article referred to a concept like motion warping.

He replied that it did not.

2.5.3 Previous Developments by A. Amini, H. Yamada, et al. In the course

of researching previous efforts to apply dynamic programmning in pattern recognition, a

number of articles were found regarding efforts to match stationary images of objects to

a priori-defined images or image maps. Representative of these are [70, 3, 230]. These

techniques are primarily point-to-point correspondence techniques as discussed in App. B,

with dynamic programming used to establish a minimum-cost association between points.

This effort has no similarity with the author's research.

2.5.4 Previous Developments by B. Burg, J. Gorman, et al. A 1986 article by

Burg and Zavidovique [41] of France proposed the use of dynamic programming-based

sequence comparison mathematics of the type proposed for this research to recognize sta-

tionary images. A 1988 article by Gorman [101] proposed the similar use of dynamic

programming-based sequence comparison techniques to recognize partially occluded sta-

tionary objects. Basically, Gorman's research called for breaking up an observed candidate

object silhouette (possibly partially occluded) into a set of sections, for each of which a

Fourier descriptor representation (analogous to a word) was defined. These section rep-

resentations were then compared to the sections for full silhouettes from known object
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classes and orientations. The object was to find that full silhouette which best matched

the observed silhouette over most of its perimeter, with non-matching portions ascribed to

partial occlusion. Due to the similarity of this effort with the proposed effort in terms of

application and mathematical tool, Gorman was telephonically contacted [100] and asked

if his research had included anything like motion warping. He stated that it had not -

in particular, he had not considered the issue of changing aspect angle. So far as can

be determined, also, the work of Burg and Zavidovique has no impact on the author's

research.

2.5.5 Previous Developments by Y. Barniv et al. The developments by Y. Bar-

niv, as originally published in [12, 131 for low signal-to-noise ratio object tracking using

dynamic programming, are a direct application and development of the Larson and Peschon

equations (Sect. 2.4.4). Together with later ideas advanced by Weiss and Friedlander [222],

Barniv's concepts appear in their latest form in [8:85-154] (note: the reader is advised to

read Larson and Peschon [133] before reading the Barniv works). The apparent intended

application of Barniv's concepts, or at least an application which serves to illustrate the

concept, was as a signal processor for a space-based imaging infrared sensor attempting

to detect cruise missiles over the ocean. The Barniv procedure is one of a class of what

are called "track before detect' algorithms, i.e., algorithms that use some rules to string

together sequences of states or points in space as though they constitute tracks, and then

attempt to determine if an object was actually passing through any of the sequences of

points at the observed times.

Barniv's contribution was to define the terms in the Larson and Peschon Eqns. (2.30)

through (2.35) appropriately for his chosen problem. In the Barniv development, one tracks

motion on a 32 x 32 array of imaging sensor pixels. Each pixel is divided into 4 quadrants,

called cells. Thus the image plane has 64 x 64 cells. A "state" is a pairing of any two

cells, a start cell and an end cell, located 4 pixel or 8 cell lengths apart. This distance

corresponds to the travel of a nominal object over the pixel integration time. For any given

cell, there are 164 states corresponding to trajectories in all possible directions. Thus, on
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the image plane, there are 64 x 64 x 164 = 671,744 total states. A stage in the dynamic

programming sense is defined by all possible states over the pixel integration time.

The discrete probability density p(xk+l I xt) is defined through any one of several

approaches as a monotonically decreasing function of the absolute value of the curvature

of the trajectory - that is, reflecting the fact that cruise missiles are most likely to travel

in straight lines. Since a given state or straight line trajectory segment passes over given

rectangular cells with generally different dwell times in each, this factor is taken into

account when defining p(zk I xk) - the probability or likelihood of obtaining the observed

measurement from a set of cells, given that the trajectory passed through that set of

cells. Basically, then, the Larson and Peschon procedure is repeated, with each new set

of integrated image frames, starting with every cell/direction combination on the image

plane as a possible x0 , looking for generally straight tracks over a growing number of image

frames, and identifying the latest endpoints of potential tracks from states (effectively,

terminal cells with some inbound direction) that have a value of I* (x, k) greater than

some threshold.

2.5.6 Previous Developments by Kramer and Demirba§. The concepts proposed

by Barniv were subsequently adapted by Kramer and Reid [129] for "track before detect"

processing with doppler radar. In the Kramer development, the states are "range-azimuth-

doppler" cells, i.e., discretized range and azimuth cells that are further subdivided according

to doppler velocity bins (elevation is not considered explicitly, so the physical tracking space

is apparently two-dimensional). Thus, Kramer starts with each range-azimuth-doppler cell,

performing a forward dynamic programming procedure after each scan to determine, for

each cell with some minimum acceptable return level, what the most likely predecessor

cell was. The analog of Larson and Peschon's I*(xk, k) parameter here is Kramer's track

"quality count," which is not a probability, but which serves to identify likely object tracks.

Demirbaq [66] has (apparently independently) developed a similar concept for radar

tracking. The author has not analyzed his concepts in detail.
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2.5.7 Previous Developments by F. Le Chevalier et al. Several months after

the definition and development of the motion warping concept, which included extensive

research covering the time period from 1980 on, and which indicated no similar efforts in

radar or imaging sensor object recognition or computer vision [14, 10, 8, 28, 33, 40, 55, 94,

96, 123, 166, 169, 180, 191, 218, 224], the author conducted additional research into the pre-

1980 time frame on a related concept. While reviewing the Proceedings of the 1978 IEEE

Conference on Pattern Recognition, the author found an article by Francois Le Chevalic;

of O.N.E.R.A., Paris, France [136] which included several of the same observations and

ideas as those behind the author's concept of motion warping. Specifically, the key points

of the Le Chevalier article were that:

(1) Aspect angle information for aircraft targets would be available from a radar tracker and

could be used to fuse radar cross section (RCS) measurements for improved identification.

(2) A "shortest path" (presumably, Le Chevalier meant forward dynamic programming)

process linking associations between (a) model outputs at various aspect angles and (b)

measurements from a target of unknown type could be used to determine the most likely

target class to have produced the observed sequence of outputs.

(3) The transition rules in the dynamic programming process would be driven by "evo-

lutionary constraints" associated with the target dynamics as observed by the radar -

i.e., model aspect angle state transitions which did not conform to feasible or observed

target dynamics would not be allowed. These constraints are evidently invoked as limits,

or "yes/no" decisions, and, as will be seen in the following chapter, are therefore invoked

more crudely than the approach envisioned in the author's research.

(4) The proposed method could be employed with sensor systems other than radar - indeed,

for any feature observable for which a metric between measurements and predictions can

be established.

This proposal by Le Chevalier et al. was derived not from an understanding of

speech processing and multisensor fusion as was the author's, but from an appreciation

that a radar target could be represented as a finite state automaton producing sequences of

observables over time/aspect angle, in accordance with evolutionary constraints described

2-67



by the target's dynamic limitations. Undeniably, the motivation and goal of Le Chevalier

et al. were the same, and the methods are related, as we will see below. The research

described herein, however, was developed independently of Le Chevalier's work.

Reviewing the discussion in [136], the Le Chevalier technique is believed to work

essentially in the following fashion. First of all, from some (presumably kinematic) "a

priorf' aspect angle information, a given (first) radar signature is known to originate from

some relatively large aspect angle window on the unknown target, say 10 to 20 degrees

square. The aspect angles in this window are defined for discrete values of length and

width (linear aspect angle). Then, the feature space metric matching distances between

the observed signature and the model-defined signatures are defined for each discrete aspect

angle value in the window, for each model.

Due to the Chi-square metric used by Le Chevalier et al., this matching distance, for

any given observation-to-model/aspect angle comparison, is directly related to the maxi-

mum classical likelihood (probability density value) p(z4 I wi, xa) that feature observation

k was generated by model wi at discrete aspect angle state x•.

Now, we consider the second observed signature, also defined to have come from some

nominal aspect angle window on the target, possibly a somewhat different window than

on the last signature. Again, for each model and window (at suitably discretized aspect

angles) we define the Chi-square (matching) distances to this second observed signature.

Next, for each model, around each discrete aspect angle value (state) with a matching dis-

tance less than some threshold for the second signature, we examine the matching distance

values for the first signature from states that lie within some "evolutionary constraint"

aspect angle bound or "association gate" (evidently circular) around that second signa-

title/aspect angle match. We associate each second signature/aspect angle match with the

most likely (minimum matching distance) first signature/aspect angle match lying within

the acceptable radius. The total matching distance associated with the second state is

now the sum of the second and (minimum) first state distances. This process continues

over successive signatures for each model until the sequence with minimum total matching

distance to the final window (signature) is chosen, indicating the most likely model to have

produced the observed measurement sequence, and a corresponding aspect angle history.
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Significantly for our later discussion, Le Chevalier appears to forego explicitly the

opportunity to "propagate" the target angular state according to observed kinematics.

He maintains that restricting allowable transitions to known "evolutionary constraints"

will reveal the correct target class and aspect angle path without the need for detailed

knowledge of target kinematics. As we will see in the following chapter, Le Chevalier's

claim that his approach works "in real time" for aircraft targets is further indication that

he eschews the propagation of angular states according to observed kinematics.

Subsequently, the author conducted detailed research to determine the extent to

which Le Chevalier et al. had developed the concept outlined in the 1978 article. Further

articles by Le Chevalier and references to his work included the following (no further works

by his co-authors were found):

(1) A classified article published in French as part of the 1980 AGARD Conference on "Im-

age and Sensor Data Processing for Target Acquisition and Recognition," which resulted

in AGARD Conference Proceedings CP-290 of the same title [137].

(2) A French patent, number 2402971, awarded in April 1979 [135), the application (num-

ber 7727362) for which was referenced in the 1978 article. This patent covers the ideas

expressed in the 1978 article.

(3) A reference to Le Chevalier's 1978 article as an application of pattern recognition

for target identification, without further comment, in a 1980 overview on (then) recent

advances in pattern recognition by the well-known pattern recognition expert, the late Dr.

K.S. Fu [89].

(4) A paper by Le Chevalier delivered at, and published in the proceedings of, the 1984

International Conference on Radar (not IEEE-sponsored) in Paris [138].

(5) A short discussion of Le Chevalier's 1978 article in a generally excellent encyclopedic

Russian work [172] covering all forms of radar target recognition known to have been

published in the West. As an aside, the referenced text is available in English from the

Defense Technical Information Center (DTIC), and is highly recommended for any target

recognition researcher.
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(6) An article by Le Chevalier published in the 1986 edition of La Recherche Aerospatiale

(the organizational journal of O.N.E.R.A., where Le Chevalier was employed) [134].

(7) A reference to Le Chevalier's 1978 and 1984 works in a chapter on target recognition

considerations in a 1987 book entitled Principles of Modern Radar [76]. The chapter was

written by Dr. N.F. Ezquerra, now (1991) employed by Georgia Tech Research Institute

in Atlanta, GA.

(8) A reference to Le Chevalier's 1986 work in a 1990 Recherche Aerospatiale article by

another O.N.E.R.A. employee [25].

(9) A U.S. patent, number 4,735,379, awarded 5 April 1988 [142], which refers to the earlier

French patent number 2402971.

The author initially obtained the works listed as (3), (4), (6), and (7) above, and

telephoned Dr. Ezquerra (see item (7)) to question him regarding the state of development

of Le Chevalier's concept. Neither item (4) nor item (6) discuss the subject of the 1978

article at all. Dr. Ezquerra stated [80] that he had co-chaired a panel with Le Chevalier

at the 1984 Conference, and that, so far as he (Ezquerra) knew, no further development

of Le Chevalier's work has been made.

Ultimately, the author obtained the other items listed. Only items (1), (2), and (9)

mention further applications of the 1978 proposal. Clearly, the patents, or items (2) and

(9), are of key interest. Item (2) does not amplify the 1978 proposal in any significant

way as far as this research is concerned. In an extension of that article, however, item (2)

expresses the intent to use this approach in an application similar to that of Kramer and

Demirba§, as discussed in the preceding Sect. 2.5.6. Item (9) applies the 1978 concept to

searches on the earth's surface, rather than in aspect angle on a target signature library.

Again, this is functionally equivalent to the Kramer concept, although aspects of the

Kramer concept appear to be improvements over the Le Chevalier approach.

Item (1) refers briefly to the applicability of Le Chevalier's concept to HRR radar

target recognition, but does not develop the theory of the concept further. The fact

that this source is printed only in French in a classified, relatively obscure (at least, very

unfortunately, for Americans) journal may explain the fact that the author has seen no
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references to it anywhere. Item (5) essentially repeats the 1978 Le Chevalier article, but

misses the point about the importance of dynamic programming to the method.

Noting Le Chevalier's claim in the 1978 article that his work was an original contribu-

tion to the study of syntactic methods of pattern recognition as discussed by Fu in [88] and

other works, and Fu's brief mention of the Le Chevalier article in Item (3) above [89], the

author reviewed subsequent books on syntactic/structural pattern recognition by Fu [90]

(pub. 1982) and Miclet [161] (pub. in French, 1984; in English, 1986). Neither of these

extensive works contain any mention whatsoever of Le Chevalier's efforts. In addition, the

author reviewed the references for all books and articles reviewed previously (including all

other references in the bibliography of this work). No other references to the Le Chevalier

work were found.

One other reference was found, however, that closely follows the Le Chevalier ap-

proach, but derives from a different origin. That effort is the subject of the following

section.

2.5.8 Recent Dc ielopments by H. Mieras et al. In reviewing the Proceedings of

the 1990 Combat Identification Systems Conference [231], the author found an article [164]

by H. Mieras et al. of Raytheon in which the authors claimed to have made use of dynamic

programming for "integrating" high resolution radar range sweeps over stable or changing

target aspect angles. Mr. Mieras was telephonically contacted [162] and questioned about

his efforts. He stated that their approach (considered proprietary by Raytheon) was in-

spired by the Kramer effort [129] discussed above, but working with aspect angle "bins"

(discretized values) rather than radar range/angle/doppler bins. Subsequently, a more

detailed report on the radar target recognition efiort discussed in [164] was found to be

available in [165]. The Mieras effort is independent of, and evidently somewhat extends,

the effort of Le Chevalier.

Like the Le Chevalier approach, the Mieras approach uses forward dynamic program-

ming to establish a minimum distance match between a set of signature observations and

library signatures stored as a function of aspect angle for any candidate target class. Due

to the Mahalanobis metric and the range alignment technique used by Mieras et al. (see
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Sect. 2.2.3), this distance, for any given observation-to-model/aspect angle comparison,

is directly related to the maximum classical likelihood (probability density) p(zk I W1, xA)

that observation zk was generated by model wi at discrete aspect angle state x'.

In addition to Kramer [129], Mieras also noted as references the articles by Barniv [12,

13] noted earlier, and another by Scharf and Elliot [196] (the latter is a relatively broad

1981 overview on dynamic programming in signal and image processing). Mieras was not

aware of the work by Le Chevalier [136], and did not explicitly mention that of Larson and

Peschon [133].

Of particular interest to the author was the way in which the Mieras method uses

a priori aspect angle data, derived for example as we have discussed in Sect. 2.3.3.1 from

kinematics. Mieras noted that his aspect angle information was limited to "a rough esti-

mate, say within a 10 or 20 degree window at the time of the sweep" [162]. He also noted

that his algorithm did not establish -n aspect angle path before the processing, but that

one "comes out of the algorithm" [162]. In response to further questions, be noted that

constraints on sweep to sweep continuity were "see' at a particular angular value. More

recent communication with Mieras [163] appears to indicate that his algorithm biases the

angular constraints, or a circular "association gate" like that discussed above for the Le

Chevalier approach, in the direction expected according to observed kinematics, but does

not use formal aspect angle transition likelihoods, which we will see are available from the

tracking process.

These comments by Mieras and the referenced articles indicated to the author that

the Mieras method does not fully exploit or "fuse" information available from kinemat-

ics, which is the fundamental intent of this research. To the level of description available,

Mieras' technique apparently corresponds closely to procedures described for the Le Cheva-

lier method - matching n observations to n locations in an aspect angle state space, subject

to kinematic transition limitations. The steps taken by Mieras to bias angular constraints

in the direction expected according to observed kinematics and other techniques [1621 ap-

pear to make Mieras method an improvement over that of Le Chevalier. The differences

between tb ýse methods and the accomplished research of the author will be highlighted in

the following chapter.

2-72



2.5.9 Significance of the Le Chevalier and Mieras Efforts. The core inspiration

behind + •e research described in this dissertation was the observation that dynamic pro-

granuning sequence comparison could be a key tool for multisensor fusion and dynamic

object recognition. Clearly, Le Chevalier and Mieras have independently preceded the

author in the kernel of that observation. The author's real contribution, then, is to de-

velop further the theory and methods for use of dynamic program r.ing and other sequence

comparison methods for these purposes. The techniques of Le Chevalier and Mieras will

be shown to be elements in a family of more-or-less capable algorithms for achieving a

particular purpose in multisensor fusion - exploiting the joint likelihood of all observable

events. The author strongly believes that the class of approaches conceived by Le Cheva-

lier, Mieras, and the author has not heretofore received the development or application

that it deserves.
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2.6 Multisensor Fusion

2.6.1 General Overview. Multisensor fusion is an extremely broad concept which

encompasses all techniques for melding information from one or more sensors to make

better (i.e., more probably successful) decisions than could be made using the output of

individual sensors separately. Taxonomies for multisensor fusion are more diverse than

those for pattern recognition, and this work will not delineate any - the reader is referred

to any of [42, 43, 44, 106, 107, 126, 145, 146, 189, 218, 224]. From 1218:1), we have the

following definition for data fusion (equivalent to multisensor fusion from our perspective),

in a military context:

(multisensor or data fusion is) a multilevel, multifaceted process dealing with
the detection, association, correlation, estimation, and combination of data
and information from multiple sources to achieve refined state and identity
estimation, and complete and timely assessments of situation and threat.

It should be recognized by the reader that all of the estimation and recognition

approaches discussed thus far in this chapter are sensor fusion techniques - even the lowly

a-03 tracker, fusing information from one sensor over time, can be considered a sensor

fusion device. In Sect. 2.2, we discussed fusion of feature observable information to define

the pattern class and orientation for an unknown object. In Sect. 2.3.2, we discussed fusion

of kinematic information to determine object track. Finally, in Sect. 2.3.3, we discussed

fusion of kinematic and feature observable information to determine object tracks.

Perhaps the one fundamental principle behind more forms of multisensor fusion than

any other is Bayes' Rule [197, 177], underlying as noted above a major branch of pattern

recognition as well as neural net theory [190] and the Kalman filter [153:209-217]. As we

saw in Sect. 2.2.1, however, the full potential of Bayes' rule can only be reached where we

know all possible classes of events (in our case, objects and their orientations), the a priori

probability of the occurrence of those events, and the probability (likelihood) that a given

actual event generates a given observation.

Lacking this a priori information, the principal alternative is mazimum likelihood

estimation or classification (e.g., Eqn. (2.2)). For example, if we have no a priori in-

formation on object or orientation probability, but know all possible classes of objects
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and have the classical likelihood function p(z I wi) that each candidate object wi gener-

ates any feasible observation z, we may assign the unclassified object to the class which

maximizes that classical likelihood function for the actual observed z. Maximum like-

lihood classification can be used suboptimally even where we do not know all possible

classes of objects, by assigning an unclassified object to the known class which maxi-

mizes the classical likelihood function. Maximum likelihood estimation is identified by

some [10, 33, 36, 82, 106] [224:6] [218:215] to be a distinctively important technique for

multisensor fusion, although other authors [145, 146] do not explicitly discuss it, presum-

ably lumping it together with other probabilistic techniques. It is important to understand,

however, that the output of a maximum likelihood estimator need not be a probability

measure per se, as we will discuss in Sect. 2.7.

Considering the use of maximum likelihood classification when all classes are not

known, the reader may observe that there is an unquantified probability that the observed

measurements do not correspond to any of the known objects. For cases like this, where

some lack of information introduces the need to quantify uncertainty, the Dempster-Shafer

technique is available [8, 33, 218]. The Dempster-Shafer methodology has been called a

generalization of Bayes' Rule to allow for uncertainty [33:381-386]. The Dempster-Shafer

analog to probability is probability mass, representing knowledge. This mass (totalling to

a value of one) may be allocated in combinations of four different ways: (1) to support

(confirmation) of any one particular hypothesis (say 74); (2) to uncertainty (say U), con-

firming no hypothesis; (3) to a disjunction of hypotheses - say 7W, V 71 V ... v 7H,,, where

v (or) indicates logical disjunction (i.e., information that indicates that 74, or some other

hypothesis, is true); or finally (4) to negation of any particular hypothesis 7"H1, confirming

for example that 7H, is not true. All mass not allocated to the negation of a particular

hypothesis is taken to indicate the plausibility of that hypothesis.

Just as with a Bayesian classifier, where the addition of measured information ideally

causes the a posteriori probability of one hypothesis to rise above the others, the addition

of information to a Dempster-Shafer classifier causes probability mass to be reallocated,

ideally causing a preponderance of mass to be assigned to the support category for one
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of the known hypotheses. When hypotheses do not overlap, and there is no uncertainty,

Bayes' Rule and Dempster-Shafer logic produce equivalent results.

2.6.2 Multisensor Fusion for Dynamic Objects. In this section, we will address

the question of why a multisensor fusion algorithm which fuses feature observable and

kinematic information should be able to recognize or discriminate objects better than an

algorithm using either type of information alone. The fundamental point to be made here

is that by increasing the number of test conditions that an unknown object class must

"pass" in order to be identified as a member of a known class, we reduce the probability

that an unclassified object could pass the tests for an incorrect class. Said another way,

adding kinematic or other requirements reduces the joint likelihood that the unclassified

object could exhibit the particular combination of behavior corresponding to an incorrect

class.

These observations regarding the significance of joint likelihood for improved mul-

tisensor fusion and object recognition are not original to this effort. The unique aspects

of this research are that we provide (1) new understanding as to why it is important to

consider the joint likelihood of kinematic and "nonkinematic" or feature observable events,

and (2) a class of tools - sequence comparison algorithms and multiple model estimators

(e.g., composed of Kalman filters) - for exploiting the joint likelihood of observed events

over time in dynamic object or target recognition.

Most automatic object recognition algorithms use feature observable information

only - those that are Bayesian in nature, providing an a posteriori probability of class

membership as in Eqn. (2.1), can be characterized as providing the a posteriori proba-

bility p(wj I Zf) that we are actually observing an object of class w1, given a set of k
feature or signature measurements Z - {z{, z, zf,...,z4 } (where the subscripts imply

measurement respectively at discrete times t, through tk, and the superscript stands for

feature), and a priori object class probabilities p(w,) for each of J known object classes.

Classically, the measurements are treated as independent in time, or from measurement to

measurement.
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Using a Bayesian approach and fusing kinematic information, however, we would re-

ally desire to produce a pattern recognition system that estimates the a posteriori probabil-

ityp(w, I Z , ZV) that we are actually observing an object of class w,, given a set of k feature
d d, dd . . d

or signature measurements as above, m kinematic measurements Zi --- z 3 zz

(note use of superscript d, as in "dynamic", rather than k as in "kinematic", since k is

a counting index in the Larson and Peschon form), and a priori object class probabilities

p(wi). The "kinematic" measurements correspond classically to positions and velocities at

discrete times t, through t, - the likely relationship between t, through tk and ti through

t,n is discussed in Sect. 3.6.5.

This ideal, but in practice generally unobtainable, system would consist of J func-

tions, one for each object class, having a domain of the space of all measurements over

time and a range on the interval of the real line from zero to one, with the sum of the J

function values equal to one (or less than one, if we wish to allow for unknown classes).

Following Rao [184:353], however, in the absence of p(w, I Zf, Zd) (or equivalently, the

joint probability density p(w,, Zf, Z") of object class and measurements), we must be con-

tent to find a set of "generalized" likelihood functions such that the maximum value for

each function is attained for the correct combination of object class and measurements.

This likelihood function may not provide a probability measure per se.

More specifically, a generalized likelihood function L[x, y, Zk] [154:75] is simply a real-

valued function of states x, parameters y, and measurement history Zk (i.e., measurements

z1 , z2 ; z 3 ... , up through and including some latest measurement zk at time tk), which is

defined a priori for a given set of states x (a maneuver) and parameters y (an object). The

distinction between states and parameters made here is again that of Maybeck [154:69], as

in Sect. 2.3.1.3. We require only that this function consistently achieve a maximum value

for measurements Zk taken from a truth model or actual system having the same values

of (object) parameters and states - in other words, the likelihood function is a "matched

filter" which should exhibit high "gain" only for signals with its design specifications.

Clearly, the object signature libraries, aspect angle "windows", and associated metrics

used in classical automatic object recognition (e.g., [20]) are likelihood functions.
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What can we gain by considering the kinematics of the unknown object? Consider

an abstract space 0 of all possible object models and aspect angles over time as part of

the domain of a matching function, L. The remainder of the matching function domain

lies in another abstract space ZI of noise-corrupted feature observations. The matching

function operates on an element from 0 and an element from V to produce a scalar value,

the magnitude of which is some measure of the likelihood that the chosen element in E

could produce the observed element in V.

A classical generalized likelihood function for recognition of a particular object class

w, is defined by restricting the domain of L to produce an 4i with domain Si C 0 cor-

responding to wi. Typically, we match sets of noise-corrupted feature observations from

abstract space V over time to elements in the first space. Unfortunately, these classical

decision theoretic functions may give higher likelihoods than ideal for the wrong object

class, in part because kinematically unlikely aspect angles (pose estimates) and aspect

angle transitions over time are allowed. Conventional algorithms that limit searches in

aspect angle to "windows" defined by kinematics are a step in the right direction, but

these algorithms are still "independent look" algorithms as defined in Sect. 2.2.1, and wild

pose estimate transitions may occur from measurement to measurement.

The key to the author's approach is to restrict the domain of each matching function

4i further, requiring the object aspect angle over time to be consistent with the observed

kinematics and vice versa, since this restriction (correctly executed) should not adversely

affect matching or likelihood function values for measurements from the correct object class,

but may lower the values given by matching functions corresponding to incorrect object

classes. This approach for understanding the need to fuse "kinematic" and "nonkinematic"

or feature observable information is an original contribution of this effort. Despite the

general lack of a full expression for the joint classical likelihood p(w1 , Zf, Zd) of object

class and measurements, we still seek to exploit the joint nature of observable events by

finding the object class most likely to have exhibited simultaneously the behavior observed

over time in several domains (kinematic, feature observable, etc.).

As we will show, prior efforts have moved in this direction by restricting the matching

or likelihood function domain to be consistent with feasible kinematics [1361, and, in a

2-78



suboptimal fashion, consistent with observed kinematics [164, 165, 163]. By further, optimal

restriction using observed kinematics, we will achieve a more highly "tuned" likelihood

function (again using the matched filter analogy). Simply, restricting the matching domain

of a likelihood function according to kinematics is the analog of conditioning p(wi I Z101

were it known, on the added information given by kinematic measurements Z".

The preceding discussion correctly implies that we will always have equal or better

recognition performance in identifying a particular object in a particular maneuver if we

progressively restrict the domain (in time, space, frequency, or any other dimension) of

each candidate matching or likelihood function to subsets that exhibit only the correct

combination of behavior for the corresponding object - and no more. The correct object-

to-likelihood function match will still indicate high likelihoods - likelihoods for incorrect

matches are more likely to fall.

Mathematically, the concept of restricting the matching domain for equal or better

performance can be expressed as shown in Eqn. (2.36) below - for any likelihood function

Ci corresponding to object class wi, with the kinematically unrestricted and restricted

matching domains denoted respectively by Si and Ti, we can show trivially by contradiction

that:

for Ti g Si:

sup £i,(T,, Z') • sup L,(Si, Z1 ) (2.36)

The preceding equation does not imply that any matching domain restriction will

improve recognizer performance. Domain restriction must be done correctly - no likelihood

function for an object class should fail to include areas in the domain that may contain

feasible sets of behavior for that class. Since theoretically optimal domain restrictions may

never be known, we expect that some tuning process may be required to define empirically

optimal restrictions.

Using the same approach from another perspective, we may force kinematics to be

consistent with aspect angle estimated from feature observations. Where an incorrect
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unknown object-to-library match forces a tracker/filter dynamic model to deviate strongly

from the true dynamics, this mismatch will be immediately evident through poor tracking

performance, large filter residuals, and other factors. Note that, in effect, we have extended

the abstract space 0 to include not only object models and aspect angles, but kinematic

(translational states and derivatives, and derivatives of the fundamental rotation states

associated with aspect angles) and time dimensions as well - and our matching process

now requires consistency across all dimensions, i.e., high joint likelihood.

This joint likelihood of kinematics and feature observables can be exploited in a

Bayesian structure, naturally expressed in practice as a generalized likelihood function.

This is the subject of the next chapter.

Finally, recalling the discussion of syntactic pattern recognition in Sect. 2.2.2, note

that the preceding discussion is implicitly an argument for the application of syntactic

methods in object recognition. In effect, we have said not only that particular pattern

primitives are characteristic of particular objects, but their order of presentation, and the

productions which govern transitions, are as well. The extremely powerful observation

that syntactic techniques apply in target recognition was first made by Le Chevalier [136].

Another observation by Le Chevalier in the same source was that syntactic dynamic pro-

gramming methods would reduce ambiguity in target recognition.

This last observation, independently made by the author and focused further in this

research, led to the choice of generalized ambiguity functions for evaluating the performance

of the proposed "generalized" likelihood function algorithms. The ease of making an ana-

lytical prediction of performance for a generalized likelihood function depends on the nature

of the function. Any such function, however, can be evaluated in experiment or simulation

with the use of a generalized ambiguity function (as proposed by Schweppe [198, 154]),

which is the subject of Sect. 2.7 below.

2.7 Generalized Ambiguity Functions

This section follows the development given by Maybeck [154:96-101] to motivate the

use of generalized ambiguity functions (GAF) for assessing maximum likelihood estimator
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performance, as developed by Schweppe [198:376-381]. The generalized ambiguity function

is an extension of the classical radar ambiguity function [57, 16] used to define radar pulse

parameters for optimum information quality (balancing range resolution vs. doppler error,

for example) according to system requirements.

The result of the research described in this dissertation is an object recognition

approach which seeks to reduce ambiguity in recognition decisions by fusing all available

information over short periods of time. The generalized ambiguity function discussed in

this section will be shown to be a natural tool for evaluating the performance of this

research product and, in general, any object recognition schemes that can be viewed as

maximum likelihood estimators.

The generalized ambiguity function is defined by the following equation:

Ak(fl,) = .. L[n,Zk]fz(tk)In(th)(Zk I (2.37)

where:

ft = the particular combination of states x(t) and parameters y (generally constant

over the time interval of interest) for the truth system which generates the set of all possible

measurement histories Zk over which the integral is taken - a likelihood function L defined

for f1t, operating on an element of this measurement history set, will ideally generate a

higher value than will any L defined for some other value of fl, operating on an element of

this measurement history set (the ambiguity function evaluates the extent to which this is

true in the mean)

f? = state/parameter values for which the generalized likelihood function is defined,

for evaluation against measurements generated by a truth model with state and parameter

values flt

Ak(fI, flt) = the generalized ambiguity function, a function of fl for a given rIt and

likelihood function L
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L[fl, Zt] = the generalized likelihood function, a function of Zk when defined for a

given f] (note that the calligraphic letter "Z," or Z, is used as the "dummy" form of Z,

appropriate for showing functional relationships in an integrand)

fz(tb)In(t,.)(Zk I f0t) = the probability density function of the measurements, given

that the true states and parameters have the value fl,

Zk = the measurement history vector as of time tk, as defined in Sect. 2.6

The reader must not allow the complexity of Eqn. (2.37) to obscure the essential

simplicity of the concept. The generalized ambiguity function is the expected (or mean)

value of a generalized likelihood function defined for varied combinations of states and

parameters, conditioned on the true states and parameters having particular values. For

any particular value of f0 defining the likelihood function, there is in fact a distribution

of likelihood function values produced, due to the different realizations of measurements

produced by a system with true states and parameters fOt.

Examining the behavior of the ambiguity function for each realizable value of flt

and, for each such value of flt, a range of f0 encompassing reasonable values of states and

parameters expected other than at f0t, we desire that the ambiguity function have an easily

discernible global maximum at 0t - i.e, that local maxima, if present, are "widely" sepa-

rated from the global maximum at 11t. Fig. 2.10 shows examples of "better" (than good),

"good," "mediocre," and "poor" ambiguity functions, corresponding to different likelihood

functions of respective quality defined over the same domain of state and parameter values.

It is important to understand the intent behind the grading terms applied in Fig. 2.10.

The "good" ambiguity function is so rated because it has a single peak value, peaking at

the value of f0 = Ot as desired, with the peak "rolling off" reasonably quickly as fl

moves away from f0t. The "better" ambiguity function is so rated because it has all of

the qualities of the "good" function, but "rolls off" even more quickly (more precisely, the

second derivative or curvature of the "better" function at the peak value is more negative).

This means that an identification of true state and parameter values at fl, can be made

with less ambiguity than with the "good" function.
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Figure 2.10. Ambiguity Functions for Estimators of Varied Quality
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The "mediocre" .mbiguity function may be so rated because of any of several non-

ideal factors. First, it has peaks other than the one at ft, so that a likelihood function

parameterized for the wrong values may give a response close to the likelihood function

parameterized for the correct value. This may lead to difficulty in making a correct decision

as to which true but unknown state/parameter set is present. Second, its main peak does

not have a maximum value exactly at nt. Third, this ambiguity function has slower rolloff

than the "good" function. Finally, the "poor" function reflects the undesirable qualities of

the mediocre function to a particularly exaggerated degree.

Furthermore, particularly for applications where we will be able to extract only a

limited number of likelihood function values prior to making a state/parameter identifi-

cation, we desire that the likelihood function values for any combination of f0 and flt be

closely distributed about the mean or ambiguity function value. This need drives us to

consider determining not only the ambiguity function, but also higher level moments of

the likelihood function probability density function for likely combinations of fl and f0t.

Ambiguity functions can be developed analytically for some likelihood functions [152, 154],

or in any case empirically by Monte Carlo simulation runs or extended experimentation.

Likewise, likelihood function probability densities might presumably be found analytically

in some cases (as an extension to [152], for example), but could also be estimated by Monte

Carlo or experimental research.

To relate these curves to the classical "probabilities of correct/incorrect recognition",

etc., generally used in ATR, note that a horizontal "threshold" line could be drawn through

these curves. The likelihood function probability density functions (recall that the general-

ized ambiguity function is the mean) for the true parameter point (object) and some other

parameter point (object) then allow one to establish the relative probability of likelihood

function values above or below the threshold at either object. This allows an immedi-

ate estimate of probability of correct/incorrect recognition, etc., for that threshold. This

can only be an estimate of such probabilities, however, because the generalized ambiguity

function is a mean value over many (ideally, all possible) measurements, and as such, it

obscures correlations between responses for individual measurements that could tend to
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cause likelihood functions for both of two different objects to fall above or below some

threshold.

If a likelihood function is expressed as a natural logarithm (so that the first and second

derivatives give a "non-dimensional" or scaled slope and "curvature" of the likelihood

function), the curvature of the corresponding ambiguity function near the value of Ai,

can be related to the Cramxr-Rao lower bound (CRLB) [184] of the covariance for a

state/parameter estimate obtained by the use of the underlying likelihood function [154,

198]. For Gaussian likelihood functions, which are naturally expressed in log form, this

relationship is particularly powerful.

Cram~r-Rao lower bounds and the class of analogous bounds called Cram~r-Rao-ike

lower bounds are of much interest in estimation theory, since they define a theoretical bound

on the quality of information that can be inferred from an estimator [125, 34, 210]. For

a vector parameter fl estimated by some process yielding an unbiased estimate A, where

the true parameter value set is given by ft, the Cramrr-Rao lower bound on maximum

likelihood estimate error variance is given by:

S- n e][h - - A] ( flA t) (2.38)

where Ak(A, fAt) is the ambiguity function corresponding to the log likelihood function,

and all terms have been defined previously. This expression provides a lower bound as

well for biased estimates, for which a "tighter" lower bound can be defined if the bias is

well-characterized [154:97].

Recently, interest has been directed toward defining and using Cramdr-Rao-like lower

bounds for object tracking [60, 62, 61, 39]. No analogous bound has been published for

dynamic object or target recognition, and at least one recent article has solicited such

bounds on performance [30]. It will be noted in Chapter V that evaluation of object

recognition algorithms by generalized ambiguity functions offers a natural extension to

the concept of a Cramdr-Rao-like lower bound for object recognition, although in fact the

ambiguity function or classical probabilities of correct/incorrect recognition may be more
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meaningful approaches by which to define recognition performance. Also in Chapter VI,

we will discuss the utility of a Cram~r-Rao lower bound in object recognition.

In 1979, Altes [1] evidently recognized the applicability of maximum likelihood esti-

mation and a generalized ambiguity function (defined rather differently than the concept

by Schweppe referrer to above) to object recognition, but Altes' proposals have not been

exercised in the open press (or in the classified press, so far as can be determined). Sub-

sequent researchers developing Altes' approach [2, 7, 173, 200] have been concerned only

with maximum likelihood state estimation (as for locating submerged objects with sonar)

rather than parameter estimation as for object recognition (note that some of the refer-

enced articles use the term "parameters" to refer to position information which we would

term "states").

Aside from the writing of Altes, so far as the author has been able to determine in an

extensive survey (including all references listed in the bibliography), neither the concept of

generalized likelihood functions nor the geiieralized ambiguity function has been employed

in multisensor fusion f)r object recognition, at least in the explicit estimation theoretic

sense in which they have been employed for estimation of states and parameters [152, 154,

1981. It seems clear, however, that many published systems could be analyzed from this

perspective - it is, however, the author's firm impression thaL they have not been. This

effort has done so.

2.8 Conclusion

With the conclusion of this chapter, we have in place all of the tools with which to

define and conduct the proposed research. In particular, we have discussed two classes of

algorithms - the Kalman filter and related estimators, and dynamic programming sequence

comparison - and their previous application in state and parameter identification and

syntactic pattern recognition.

In following chapters, we will develop the theory and practice for applying these

tools - separately and together - in dynamic object recognition. Our intent in each case

will be to exploit for recognition the chara teristic coupling between states, parameters,
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and measurements of dynamic physical objects. We will use knowledge of such coupling

and sequences of measurements, evaluating the consistency of measurement sequence gen-

eration with the known coupling for each object class. Knowledge of characteristic coupling

allows us to consider:

(1) The joint likelihood of observed events over time from known target classes, conditioned

on past measurements and a priori information for each class.

(2) The syntax of observed events from unclassified objects, by comparison with the syn-

tax of event sequences expected from known target classes. For known physical objects,

the process of generating sequences or sequence spaces of expected elements for each class

inherently considers the joint or coupled nature of the processes which produce the se-

quences.

(3) Restrictions on the domains of likelihood functions used to identify known object classes,

according to joint or coupled behavior expected over time. We will reject object-class

associations that do not fit reasonable restrictions.

These three considerations are simply different ways of making the same statement.

The only differences in our application of these considerations from case to case will be

driven by the limitations of the available tools. We will see that the Kalman filter and

dynamic programming sequence comparison techniques possess a combination of charac-

teristics which allow them together to exploit joint likelihood for objects with linear and

nonlinear state and measurement spaces - a frequent combination for dynamic physical

objects.

The remainder of this dissertation will refer to the concepts discussed in this chapter

to put the author's research into perspective with previous efforts. The next chapter lays

out the major functional elements of the author's contribution. Subsequent chapters will

demonstrate those elements.
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IlI. Exploiting Joint Likelihood in Object Recognition

3.1 Introduction

In this chapter, we consider approaches for exploiting the joint likelihood of "kine-

matic" (classically, position and velocity) and "nonkinematic" (sensor signature or feature

observable) measurements for dynamic object and target recognition. We will examine

conventional and unconventional estimator structures, and define constructs whereby these

structures can be combined to perform specific tasks in particular situations. All of these

estimators will involve forms of sequence comparison, since measurements from an unclas-

sified physical object occur naturally over time in sequences that contain much information

about the joint likelihood of their generation by any particular a priori known object class.

Recall that our objective is to make improved (more probably correct) estimates of

object class, based or conditioned on measurements from all available sensors. Following

the discussion in Sect. 2.6.2, we aspire to produce a pattern recognition system that gives

the a posteriori probability p(w, I Z1, Z') that we are actually observing an object of class
wi, given a set of k feature cbservable measurements ZV = !z, z!, !k

k 1, 2• Z3,...,I Zf , m/ kinematic
Zd=fdZd d

or dynamic measurements 1 2 3., z,}, and a priori object class probabilities

p(wi) for each of J known object classes. Historically in general, however, as noted in

Sects. 2.2 and 2.6.2, only feature observable ("nonkinematic") information Zf has been

used for object recognition, although kinematic information has been used to limit search

windows.

Expanding significantly the approach of Therrien [2111, we will not be content to limit

ourselves to cases in which it is possible to make a linear prediction of fiuture measurements,

based on current state estimates derived from previous measure -I1,,r feature spaces

which are highly nonlinear functions of an underlying dynanui ,[,)ace subject to

"high frequency" variations or unpredictable transitions (radar sg",. tire as a function of

aspect angle, in particular), linear or linearized prediction is impossible in a practical sense.

Therefore, we now set out to extend the status quo of dynamic object / tactical target

recognition in three steps.
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First, we will define a new class of recognition algorithms based on kinematic/aspect

trackers (recalling Sect. 2.3.3) that combine kinematic information while obeying feature

observable constraints. These algorithms will exploit the joint likelihood of observed kine-

matics, conditioned on feature observable or signature measurements. The results will

provide major practical extensions to the proposals of Therrien and Eagle (the latter be-

ing discussed previously in Sect. 2.3.3.1).

Second, we will define a different class of algorithms that combine feature observ-

able information while obeying feasible or observed object kinematic constraints. These

algorithms will exploit the joint likelihood of measured feature observables, conditioned

on kinematic measurements. The results will provide significant theoretical and practical

extensions to the efforts of Le Chevalier et al. [136] and Mieras et al. [164, 165].

Either of these algorithm classes can be used for stand-alone object recognition, and

that is a primary approach taken in this research. Third, however, we will show how

these two approaches can be combined to yield a new estimator structure that uses the

joint likelihood of kinematic and feature observable observations, conditioned on previous

measurements from both domains and other a priori information, for real-time recogni-

tion of dynamic objects. This estimator structure shows considerable promise for effi-

cient state and parameter estimation in cases involving both linear and nonlinear state

space/measurement space relationships. Although timelines for this research did not per-

mit implementation and testing of the third construct, the theory and structure for design

of such a new estimator are laid out clearly. All of these developments will comply with

well-understood practices of Bayesian parameter estimation.

The next two sections discuss terminology and factors that bear on measurements and

estimation for dynamic objects in general and tactical targets in particular. Subsequent

sections address new recognition schemes. The last section in this chapter motivates new

techniques for evaluating algorithm performance. Techniques considered include classical

probabilities of correct and incorrect identification, as well as the generalized ambiguity

function introduced in the previous chapter.
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3.2 Spaces and Dimensions.

In the subsequent discussions, it will be necessary to deal with at least four different

concepts of spaces and their associated dimensions. All have been previously introduced in

this dissertation, but their subsequent close association may cause some confusion, so they

are revisited here for contrast and comparison. These are (1) physical or three-space, (2)

aspect angle space, (3) feature or feature observable space, and (4) warping path space.

3.2.1 Physical or Three-Space. This is the usual Euclidean representation of three

dimensional physical space. In general, the behavior of real objects in this space is described

by positions and higher derivatives in six degrees-of-freedom ("6-DOF"), corresponding to

three translational and three rotational degrees of freedom - translation and rotation states.

Behavior can only be quantified relative to some reference frame, generally Cartesian,

which may be stationary or non-stationary in physical space. Position or displacement in

the rotational degrees of freedom is referred to as angular orientation.

It is important to note that for a 6-DOF object, the term kinematics properly refers

to both translational and rotational state behavior. As we have noted in previous chapters,

however, the general inability to measure rotation state directly using remote sensors

has led to the use of the term " 'kinematic' measurements" to refer to measurements of

translational state variables only - classically, position and velocity. In this development,

the distinction will be clarified where required.

3.2.2 Aspect Angle Space. This space is the entire 47r steradian extent of the

hypothetical aspect angle sphere (equivalently, the surface of the unit sphere) as shown in

Fig. 1.2, which is closed under allowable transitions on that sphere, and which is therefore

considered an aspect angle "space." It may also be necessary to speak of a region or

"window" on, or subset of, the hypothetical aspect angle sphere. The entire aspect angle

space and regions in general are inherently two-dimensional, if we consider only in-plane

rotation-invariant (see "PSRI," in App. A) feature observables. These cases may require

specification of feature observable values as a function of object-frame relative azimuth and
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elevation angles, as shown in Fig. 5.1, or as a function of the equivalent object-to-sensor

unit vector in the object body frame.

In dealing with a non-rotation-invariant feature observable, or where a transformation

is required from aspect angle to object rotation state with respect to some frame in physical

space (discussed below), a third dimension - roll about the object-sensor vector - must

be added to specifications of aspect angle. An aspect angle path, as seen in Fig. 1.2, in

azimuth and elevation angle (and possibly roll, although not visible in the figure) is a

one-dimensional aspect angle region or subset.

Henceforth, a particular aspect angle state or location in aspect angle state space

(continuous or discretized) will be denoted xa. The superscript a refers to aspect angle,

just as superscript d denotes translational states (associated with "kinematic" or dynamic

measurements). In general, each value xa represents the orientation of the observing sensor

relative to the observed object or target body frame at some particular time of interest.

For some time t,;, the corresponding aspect angle state is given as x,.

For a known sensor angular orientation relative to some reference frame in physical

space, three-dimensional aspect angle is equivalent to a sensor-relative representation of

the object's angular orientation or "rotation state" relative to that physical space reference

frame. Since this restriction will apply in general for the discussions here, the term xa

may be used interchangeably for sensor-relative "aspect angle" or rotation state relative

to some other, generally stationary reference frame in three-space. Distinctions between

aspect angle state relative to the sensor and rotation state relative to some other frame

will be clarified where necessary.

3.2.3 Feature or Feature Observable Space. This is the classic feature space dis-

cussed in Sect. 2.2 - a vector space in which a given feature observation or measurement

of the object can be expressed as a point. Thus, the dimension of the feature space is

determined by the number of individual scalar elements in a feature observable measure-

ment vector. The dimensions may or may not be independent in any particular sense of

the word - functional, statistical, and/or temporal relationships may exist between feature

space "dimensions". Feature spaces of dimension n are generally taken to be isomor-
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phic [170:173] to R', the (Cartesian) vector space defined by a collection of n mutually

orthogonal real axes sharing a common origin.

The Cartesian product space formed by the aspect angle space and some feature

space provides a framework for description of the appearance of any object to a sensor

system extracting the given features as the object traverses any given path in aspect angle.

Each object model corresponds to a particular set of feature observable values for each

aspect angle value in this Cartesian product space. Due to the stochastic nature of feature

observable generation and measurement, a given point in aspect angle space for any one

model will invariably be associated with many points in feature observable space. The

realization likelihood of particular feature observable values for any aspect angle will be

governed by some probability density, which generally will be dependent on the state of

the object, sensor, and other factors (consider, for example, the effect of tactical target

engine vibrations on radar returns).

As in Sect. 2.6.2, a particular element (generally, a noisy measurement or observation)

from a feature observable space (continuous or discretized) will be denoted zf, where the

superscript f refers to feature. A sequence or vector composed of such elements, where in

general each element corresponds to a different measurement time, will be denoted ZV, as

in Sect. 2.6.2.

3.2.4 Space of Allowable Warping Paths. As defined and discussed in Sect. 2.4.3,

this is the set of all possible associations between elements in two sequences, or between

a sequence and a region from which sequences can be extracted. When comparing a

one-dimensional sequence to another one-dimensional sequence, the space of all possible

associations is two-dimensional, as shown in Fig. 2.8. When comparing a one-dimensional

sequence to a two-dimensional set of possible sequence elements, the space of all possible

associations is three-dimensional, as shown in Fig. 2.9.

3.3 Joint Likelihood in Object Recognition

Recall the discussion of multiple model filters and parameter identification in Chap-

ter II (see Eqns. (2.20) through (2.22)), following the development in Maybeck Vol. IX
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[154:129-1361. We noted that conventional (e.g., linear, linearized or extended Kalman)

filter structures can be defined readily in a Bayesian, multiple model residual sequence

analysis framework to perform parameter estimation.

In that conventional multiple model parameter identification approach, we use the

a priori likelihood of each model (feasible parameter set) and - from residual analysis -

the joint likelihood of each model having produced the observed measurements at each

measurement event over time to identify the most probably correct parameter set. We

noted that this approach is intimately related to the target recognition approach taken by

Therrien [211], and recommended by Daum [9:177-178]. In target recognition, the discrete

sets of parameters are the known target classes, and we have measurements in "kinematic"

(physical translation space) and feature observable domains.

For many object or target states, parameters, and measurements of interest, a con-

ventional filter will adequately model the desired object behavior, and provide a basis for

residual analysis; that is, checking the deviations over time between (1) measurements pre-

dicted for each object class, and (2) measurements observed from the unclassified object.

This is particularly true for the classical "kinematic" or translational states and associated

measurements of range, pointing angles, and associated rates, or alternative physical space

equivalents.

But physical objects are inherently six degree-of-freedom or "6-DOF" entities - that

is, to describe their kinematics or motion fully, we need to consider states (positions and

derivatives) in three translational and three rotational state subspaces. A proper descrip-

tion would in general consider each subspace separately, but the state dynamics for many

physical objects are highly coupled across the subspace boundaries. For any particular ob-

ject, the nature and degree of this coupling are generally a function of object parameters

that can be directly or indirectly expressed in the state dynamics (mathematical) model.

For example, in the case of conventional airplanes (recall Sect. 2.3.3.1), rotational

states are often closely coupled to translational acceleration states. The parameters which

govern this coupling are aircraft class-specific quantities like wing surface area, coefficient

of lift, mass, and so on. The coupling implies that rotation state measurements could be-
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tray much regarding future kinematic velocity and position. Unfortunately, the kinematic

position measurements to which most object trackers are limited provide little observability

of rotation state (or aspect angle, from a sensor-relative perspective).

Now for most objects of interest, translational and rotational dynamic states are

related in a nonlinear fashion, but often can be linearized for modelling and prediction in a

conventional filter structure. If we could measure translational and rotational states directly

for some class of objects and apply these measurements to an appropriate multiple model

set of conventional filters, we might expect that an incorrect combination of measurements

and filter model would exhibit high residual error, where the true and filter model state

dynamics coupling assumptions differ. This high residual error would be an expression that

that particular filter model has a low joint likelihood of producing the observed translational

and rotational measurements. The residuals could then be combined in the classical way

to yield an a posteriori probability of class membership.

In general, it is very simple to obtain "kinematic" or translational measurements

that are linear functions of, or readily linearized with respect to, translational state spaces.

Unfortunately, as noted above, we cannot in general measure "rotation state" directly for

remotely observed objects. However, feature observables or signatures are generally direct

functions of aspect angle, and their measurements potentially contain much information

about rotational states.

The problem is that, in typical cases of interest, conventional estimators often cannot

exploit the relationship between rotational states and feature observable measurements.

Simply, it is frequently impossible to make a reasonable linear or linearized prediction of

the expected feature observable measurement from current knowledge of aspect angle or

rotational state. Under these circumstances, the classical approach of Therrien [211] or

multiple model residual analysis cannot be used.

First, particularly for aircraft targets, true aspect angle state values are likely to

change unpredictably over time. In a classical state estimation sense, we say that they

have high "driving noise strength" or "Q" (see Sect. 2.3.1), driven directly as they are by

unobservable, unpredictable, often high gain operator inputs (e.g., roll/pitch commands).
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Second, the relationship between feature observable measurements zf = h(xa) + v

(relaxing the notation from Sect. 2.3.1.1 somewhat for clarity) and aspect angle state

x" may be poorly understood or highly nonlinear, even to the extent that the partial

derivative 6h(xa)/oxa and expected measurement if = h(*') information required by

linear or linearized filters (Eqn. (2.18)) cannot be reasonably defined.

Even if the relationship is known, the "deterministic" measurement component h(xa)

of zf (see Eqn. (2.15)) and its partial derivative may vary so quickly with respect to

aspect angle state that reasonable, otherwise unobservable changes in aspect angle render

the partial derivative and expected measurement unpredictable. In other words, if the

unpredictable aspect angle state change between measurements (a function of Q and inter-

measurement time interval) is likely to be such that the expected measurement h(:ia)

cannot be predicted, or the variation of h(xa) cannot adequately be approximated as

linear over the range of current and likely future xa values, then conventional "predictor-

corrector" fitering won't work.

This is precisely the situation for aircraft targets and their radar signatures (particu-

larly narrowband, non-high range resolution) due to high aspect angle rates and scatterer

interactions as described in Chapter II. We can illustrate this problem for any notional

feature space (not limited to radar), as shown in Fig. 3.1. Suppose your state location

at time to is somewhere in the region marked x*, but at the next measurement time t1 ,

when your state may lie somewhere in the region marked x', you receive a measurement

h(xa) (a function solely of some unknown particular xa). As a conventional filter designer,

your first questions are (1) "what value of Oh(Xa)/OXa is appropriate?" and (2) "what

is my expected measurement i = h(*V) at tj?". We quickly observe that, due to the

rapid variations of h(xa) as a function of xa and the uncertainty in your current and new

state locations, it is clearly impossible to define a meaningful partial derivative value or an

expected measurement.

The conditions put forth in the scenario of Fig. 3.1 are particularly stressing. The

next section will examine conditions under which conventional multiple model residual

analysis techniques can be used with kinematic and feature observable information for
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h(xa) (notional deterministic signature)

h(xa)

Xa (notional aspect angle)

Figure 3.1. A Measurement Function Uniitable for Conventional Filtering

dynamic object / target recognition - without obtaining a linear predictive model for

feature observable measurements.

3.4 Conventional Multiple Model Approaches for Dynamic Object Recognition

In this discussion, we will limit ourselves to filter state dynamics models that include

coupled translational and rotational (or aspect angle) states only. We will exploit this

coupling for multiple model residual analysis while using - but not predicting - feature

observable measurements. The outcome of this process will be an expression for the joint

likelihood of translation state-related or "kinematic" measurements and rotation state-

related pseudo-measurements, conditioned on feature observable measurements. This is

Step One in the three step process outlined at the start of this chapter.

3.4.1 Required Conditions and Estimator Alternatives. First, suppose that a

one-to-one (see App. A) mapping exists between aspect angle space and some feature

observable space, and is usable as a transformation between the two spaces, for a partic-

ular object of class "A" (failing the one-to-one requirement, we require that the inverse

mapping is of "low ambiguity", in the sense of Sect. 2.2.1). This mapping is said to pro-

vide a pseudo-measurement of aspect angle, or equivalently a pose estimate, as defined in

Sect. 2.2.1. For the correct association of "kinematic" (translation state) measurements
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and aspect angle pseudo-measurements from this object with its coupled dynamics filter

model, a feature observable measurement will be equivalent to an aspect angle or rota-

tion state measurement (noting the usual relationship between aspect angle and rotation

states discussed in Sect. 3.2.2). Moreover, we expect that the residual sequence (i.e., from

all 6-DOF kinematic measurements and pseudo-measurements) for this correct association

should indicate high joint likelihood of the observed "measurements".

However, suppose that the aspect angle-to-feature observable mapping and/or dy-

namics coupling is different for some other object of class "B". In this case, we should not

expect that the aspect angle pseudo-measurement derived by mapping feature observations

from class "A" into the aspect angle space of class "B" will lead to high likelihood (small)

residuals from the filter model corresponding to class "B".

Thus, we have a set of conditions under which the joint likelihood of all 6-DOF

kinematic events (translational and rotational measurements or pseudo-measurements) can

be assessed, conditioned on prior kinematic and feature observable measurements, without

explicitly considering the likelihood (or probabilistically-weighted distance in feature space)

of the feature observable measurements per se. Restated, those conditions are (1) existence

and availability of a low-ambiguity aspect angle-to-feature observable mapping for each

class, (2) differences in this mapping for different object classes, and (3) differences in the

state dynamics coupling for different classes. Condition (1) must apply in every case, but

either or both of (2) and (3) must apply only to the extent required to obtain distinctly

different residual sequences or other evidence of incorrect associations for objects and

behavior of interest.

Observe in passing that the aspect angle-to-feature observable mapping need neither

be linear nor "onto" (see App. A) the entire feature observable space (i.e., the mapping

must only be onto the range of the transformation for each class). The point here is

that a nonlinear mapping can still give us the one-to-one condition that we require, and

a mapping that is not "onto" the feature space allows us to reject outright the need to

investigate a given class which cannot map from its aspect angle space to the measured

feature observable value.
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For tactical targets, the Kendrick-Maybeck / Andrisani / Sworder-type "kinema-

tic/aspect angle" estimators provide exactly the sort of coupled dynamics filter model

that we seek. They use "kinematic" (translation state) measurements in conventional

linear ways, and ignore the detailed relationship between true aspect angle and feature

observable measurements by allowing the estimator to accept only a pseudo-measurement

of aspect angle, generally from some pose estimator, rather than the feature observable

measurement itself. In the following section, we consider exactly how a kinematic/aspect-

angle filter would be used in a multiple model estimator for object recognition.

3.4.2 Kinematic/Aspect-Angle Estimators for Recognition. We assume that con-

ventional measurements of object position in three space and relative (doppler) velocity

along the object-sensor vector are available at discrete times (measurement intervals).

Moreover, we assume that pseudo-measurements of object aspect angle are available at

the same times, say in the form of three independent Euler angles relative to some vector

frame of reference. In the nomenclature of Section 2.3.1.3, this defines a seven-state zk

vector, which provides an update to each of J kinematic/aspect-angle fiters (one for each

candidate object class) at each measurement event.

Recall that the pseudo-measurements of object aspect angle za are in fact based

on aspect angle or pose estimates :" (the "hat" denoting an estimate). In general, we

have z' = h(ia), with G = argx.{max[p(z I xa,w,)]}. Depending on the representation

for object rotational states in the kinematic/aspect-angle filter, the function h and filter

measurement matrix H = Oh(xa)/Oxa are at most simple coordinate transforms, and

can be identity operations. Thus, in fact, the aspect angle pseudo-measurement contains

information provided by feature observables over time, or VZ. The measurement covariance

for the pose estimate is a function of the a priori-characterized performance for the pose

estimator of each object class, for the given ambient conditions.

The object position and velocity measurements (common to all object classes) and

aspect angle pseudo-measurements (in general, unique to each class) are provided to the

appropriate set of kinematic/aspect-angle filters - one filter for each object class. In

turn, the filters generate translation state- and rotation state-related (i.e., coupled 6-DOF
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kinematics) residuals and covariances. We can now follow Sect. 2.3.1.3 to define an object

classifier using residual analysis for "kinematic" (translation) measurement and "aspect

angle" pseudo-measurement residuals in the following Bayesian structure:

P(WHi 1I(4 I zi 1, Zk'. n PZ +-~fD 1w 1)P(Wi) (3.1)p(w,, I z~Z=,z,) d.
,= {fl=I[p(z• I n WA , I AW

where:

Zf = a set of k feature observable measurements z!

k+.;d= a set of k + a "kinematic" (translation state) measurements zd, where s > 1

in general (representing kinematic measurements which precede the k feature observable

measurements - to be discussed in Sect. 3.6.5)

zd,a= a vector formed by juxtaposing "kinematic" measurements zd and aspect angle

(pseudo) measurements za taken or available at time tn

and other variables are as defined earlier.

An immediate extension to this concept is to allow "state reasonableness monitoring"

as discussed in Sect. 2.3.1.3. Under this construct, our Bayesian expression is of the form:

W, I zI, _, - ) I }p ( w, ) (3 .2 )p(jJ I1i 11,z ic+n I Zdns-= n 'WA(AW

where:

ni = an estimated state or states which we wish to compare to anticipated values

for each model wi at each time tn

and other variables are as defined earlier.

3.4.3 Summary. Given a pose estimate from a feature observable sensor and

associated pose estimators, then, Kendrick et al.-type filters in a multiple model structure

provide a natural tool for residual analysis and Bayesian estimation of object class mem-
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bership, considering the joint likelihood of object behaior with respect to kinematic states

and measurements that the filter is well-suited to process. Chapter IV will propose a suit-

able estimator model for implementing these equations, and show how residual modeling

and state reasonableness checking betray an incorrect object-model association.

This straightforward, conventional multiple model construct provides Step One in

the three-step process discussed at the start of the chapter. The second (most challenging)

and third steps remain to be solved. In the following section, we pursue an alternative ap-

proach to object recognition, which will lead to Step Two. Those results will be integrated

ultimately with conventional multiple model techniques to form a new class of estimators -

satisfying Step Three.

3.5 Comparing Observed and Ezpected Feature Observables Without Linear Prediction

Recall from Sect. 3.4.1 that necessary conditions (2) and (3) for the use of kine-

matic/aspect filters in object recognition required differences in the feature observable-

to-aspect angle mapping for different objects, and/or differences in the state dynamics

coupling for different classes. The reader should note that these conditions are not suffi-

cient for the development of residual differences between correct (true) and incorrect filter

models. That is, we may conceive of some true object and trajectory which yield, from

some feature observable domain, pose estimates that are reasonable for both correct and

(one or more) incorrect object library classes, given the observed kinematics.

Kinematically then, even with a pose estimate, the two classes are ambiguous, and to

distinguish them we may need to look also at matching distances in the feature observable

space. Recall that the pose estimate is an angle value, and it says nothing about the

closeness uf measured and library signatures in feature observable space - a single signature

could yield reasonable pose estimates for two different library classes, even though the

matching distance in feature observable space is much greater for one library class than for

the other.

Anticipating the need to recognize dynamic objects with ambiguous feature observ-

able spaces, however, as implied in the introduction to Sect. 3.3, we are still not confident
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to make a predictive estimate (linear or otherwise) of the next feature observable measure-

ment, for comparison to the observed measurement. What other alternatives do we have

for comparing the observed feature observable measurement to possible values for each

object class?

First, for a discretized aspect angle space xa, a typical decision theoretic, parametric

pose estimator for object class w, may provide the value maxx. {p(z! I xa, wi)} - that is,

the likelihood of observing a single feature observable value zV at the aspect angle value Xa

(the pose estimate) where that likelihood is maximized. Note the use here of a lower case z,

referring to a measurement at a single discrete time. For a statistically well-behaved pose

estimator, that is, one exhibiting low, unbiased ambiguity with respect to aspect angle for

the correct object-library association, this output likelihood may be a useful metric for

comparison.

In general, however, comparing these values for two different object classes W1 and

wj is a questionable approach to comparing distances in feature observable space, because

each such value represents only a maximum likelihood value derived from one aspect angle

state, rather than a maximum a posteriori estimate found by considering all possible states

x'. Under circumstances where the likelihood of a given feature observable measurement

changes rapidly with aspect angle - as seen in Fig. 3.1 - use of the likelihood from the pose

estimator is decidedly suboptimal. Moreover, in these cases we expect that a classical pose

estimate history - considering each feature observable measurement independently - will

be very "noisy", exhibiting random changes in aspect angle, perhaps even for the correct

object-library association. How can we derive an accurate aspect angle estimate for the

(unknown a priori) correct class in these cases?

To address these issues, we will develop the methodology of Larson and Peschon for

use in object recognition. It will be seen that the Larson and Peschon approach is eminently

applicable for dealing with aspect angle states and ambiguous feature observables, provided

that we have some basic knowledge about the "a priori" likelihood of transitions in the

aspect angle space xa.
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Unlike conventional estimators, the Larson and Peschon estimator does not create

one predicted state vector and corresponding predicted measurement for comparison with

the next measurement. Rather, the Larson and Peschon estimator evaluates all reasonable

new state vectors (candidate locations), considering the likelihood of observing the new

measurement at each candidate location, and the likelihood of being at that new location

given (1) the likelihood of being at some previous state location, and (2) the likelihood of

moving from that previous location to the current candidate location. The use of dynamic

programming provides a method for performing these calculations without resorting to an

exhaastive search covering all state locations over all time.

Finally, as we have seen, the output of the Larson and Peschon equations is naturally

a measure of the maximum joint likelihood of observed events, conditioned on a priori in-

formation. For this reason, it will fit naturally into our desire to exploit the joint likelihood

of observed events, allowing us to work with aspect angle and feature observable spaces

that cannot be treated with conventional linear estimation techniques.

Sect. 3.6 develops the Larson and Peschon methodology in detail for object recogni-

tion. We have seen in Sect. 2.4.2 that the Larson and Peschon equations are a particular

form of forward dynamic programming sequence comparison - this observation will lead

naturally to the consideration of classical dynamic programming sequence comparison and

other sequence comparison methods for dynamic object recognition.

Development of these forward dynamic programming sequence comparison-based

techniques for dynamic object or target recognition will accomplish Step Two of the three

step process outlined at the start of this chapter. This step will be accomplished by looking

at differences between objects in feature observable space only, but considering likely kine-

matics. That is, we will use "kinematic" (i.e., translation state-derived) measurements,

with knowledge of the state dynamics translation/rotation coupling for different object

classes, to restrict our choices for matching feature observable measurements to feature

observable libraries for each class according to likely dynamics. The result will be an ex-

pression for the joint likelihood of measured feature observables for each class, conditioned

on kinematic measurements.
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This process will not require differences in the translation/rotation state coupling

between classes. However, as a consequence of this process, a high quality pose estimate

will be obtained for each class, even for noisy feature observable spaces. This fact will

allow us to combine kinematic/aspect recognizers with forward dynamic programming-

based recognizers for use in ambiguous feature observable spaces. This combination will

accomplish Step Three of the three step process. The result is a new form of estimator.

The following section develops extensions to the Larson and Peschon equations for

object recognition. Subsequent sections consider other forward dynamic programming se-

quence comparison-based approaches - both new forms developed in this research and re-

lated concepts developed by other researchers. Performance of these recognizers is demon-

strated in Chapter V.

3.6 Applying the Larson and Peschon Approach in Recognition

The purpose of this section is to apply Bayes' Rule [153, 197], the Larson and Peschon

methodology (see Sect. 2.4.4 and [133]) and aspect angle state transition information given

by kinematic state estimates (i.e., 6-DOF kinematic state estimates, possibly based on

translational measurements only: see Sect. 5.5), to provide a representation for the a

posteriori probability of class membership p(w, I Zf, Z") for each class w1 , or a reasonable

estimate thereof. In this development, the new information, in a Bayesian sense, is given

by the feature observable measurements. The a priori information is given by kinematic

measurements and prior knowledge of class probability p(wj).

This effort will achieve Step Two of the three-step process outlined at the start of

this chapter, providing an estimatcT structure that handles dynamic, nonlinear feature

observable / aspect angle relationships in a straightforward Bayesian fashion. The devel-

opment in this section will show that, in general, calculation of the a posteriori probability

p(w, I Z/, Zd) requires an exhaustive search, but that use of the Larson and Peschon

approach allows one feasibly to define a "best estimate" for that quantity. Recalling the

discussion in Sect. 2.6.2, we will observe in Sect. 3.8 that this Larson and Peschon approach

to fusion of kinematic and nonkinematic or feature observable information provides a more
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optimal approach for restriction of the domain of a feature observable-matching likelihood

function than prior efforts by Le Chevalier and Mieras, as discussed in Sect. 2.5.

The reader should note that the efforts discussed here are believed to be both original

and significant. The contributions are:

(1) The first application of the full Larson and Peschon approach to dynamic object recogni-

tion (as opposed to previous suboptimal applications of the Larson and Peschon equations,

or functionally similar approaches, previously described in Sect. 2.5, and further compared

in Sect. 3.8, to follow).

(2) The first known theoretical procedure for obtaining maximum a posteriori (MAP) prob-

ability of class membership based on feature observable and kinematic measurements, and

a priori probability of class membership, where linear (or linearization-based) estimation

techniques cannot be used.

(3) Suboptimal but practical developments of contribution (2) using outputs of the Larson

and Peschon equations to approximate the proper a posteriori probability to any desired

confidence level.

3.6.1 Facts and Assumptions. First, we confine our attention to a set of J a

priori known object classes w,, each represented by a hypothetical aspect angle sphere

(see Figs. 1.2 and/or 2.6) or model having appropriate feature observable distributions

associated with each aspect angle value. Now, for any given problem (i.e., any given set of

discrete measurements {Zf, Zd} over some time interval), we can restrict our concern to

a given aspect angle region on each of the object spheres - that is, we assume a negligible

probability that the class has presented aspect angles outside this region over the duration

of the time interval corresponding to measurements Zf.

The aspect angle region can be thought of as the union of a set of aspect angle

"windows", each of which is a "sub-region" of feasible aspect angle corresponding to a

particular measurement zV in the sequence Zf. Fig. 3.2 shows how these windows relate

to the region as a whole. The vertical separation between windows is for clarity only.
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Figure 3.2. Aspect Angle Windows and the Nominal Aspect Angle Path - All Algorithms
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Note that the time interval corresponding to kinematic measurements Z' will over-

lap completely and contain the time interval corresponding to the feature observable mea-

surements. For reasons to be clarified in Sect. 3.6.5, in contrast to the k + a kinematic

measurements discussed in Sect. 3.4.2, the m kinematic measurements discussed here may

in general include measurements taken after as well as before the k feature observable

measurements. Also, due to differences in angles of attack, etc., for given maneuvers from

different classes, the regions or windows may not be identical from class to class. Given

some "granularity" or discretization of continuous aspect angle into "cells" on the object

spheres (assumed identical for spheres of all object classes), each cell is considered a state

a
x.

Now, define the super-region Xa as the (super-) set of all aspect angle cells or states

that belong to the region of consideration for at least one object class, a total of say N,

cells or states in number. Any set of k + 1 aspect angle cells, or aspect angle state his-

tory, corresponding for analysis purposes to discrete cell locations at feature observable

measurement times along an aspect angle path which yields the k feature observable mea-
surements Z1  zf, zf, z ,..., zf}, will be denoted X = ,X,, X,...,xa} (where

x' is an a priori or starting state and the other k states correspond one-for-one to the

feature observable measurements ZA). Note that, as do Larson and Peschon, we choose

not to make a measurement at time to, corresponding to state x' - this distinction provides

a clean boundary between a priori information and new information.

The (finite) number Np of possible such aspect angle paths through X" is given by

the standard computation for the number of permutations of N, things taken k + 1 at a

time, with replacement, or (N,)k+1 paths. We will denote the set of all such paths as XPk.

Henceforth, this development will use notation somewhat different from that of Larson

and Peschon by referring to a particular "nth" path of k + 1 aspect angle states as XA,,,

(consistent with the notation wi referring to an ith object class).

Clearly, from the definition of Xa, some of these paths Xa,,, are of negligible prob-

ability for one or more object classes, because these paths fall outside the subsets of X'

appropriate for those classes. Other paths are of negligible probability for all classes be-

cause they correspond to kinematically unlikely or "impossible" aspect angle paths. Since
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we are dealing with a finite number of aspect angle cells, we will assign probabilities of

starting states and state transitions, rather than the probability densities (arising from

discretization of continuous space) as discussed by Larson and Peschon - recognizing that,

in general, in the limit as discretization becomes finer and the number of states approaches

infinity, the distinction is irrelevant.

We will see that applying the Larson and Peschon equations (with reasonable modifi-

cations for object recognition) for any one model w, gives the particular state history XA,,,

call it �/�. (i.e., the "Larson and Peschon" estimate of the aspect angle path for model

wi), which maximizes the conditional probability p(Xan I Z , Z", w1). With appropriate,~~~~~f Zdw) ih prpit

modifications, we will be able to find the joint conditional probability p(X,,, wn Zi ZkM

which we will sum over all possible X•,, to find the quantity that we desire, p(w. Z•, Zk ).

Clearly, it is no longer sufficient to ask what aspect angle path X, we are on - also we

must ask over which object model w, this path is traced. The major point of this section

is to understand the relationship between (1) the maximum likelihood path found by the
f[LP

Larson and Peschon approach, i.e., Xk/, for a particular w1, and a joint conditional prob-

ability associated with that path, and (2) the information that we want, p(w, I Zf, Z)

Further assumptions are:

(1) Following Larson and Peschon, assume that feature observable measurement 4is

independent of aspect angle state xa and z4 for ti $ ti. As discussed in Sect. 2.4.4, this

assumption is open to question for real world objects and sensors, and is readily relaxed,

at the risk of added dimensionality (i.e., computation).

For example, suppose we wish to determine the likelihood of a feature measurement

zf, originating not simply from one aspect angle state x', but originating from a set of states

x_ 1 to x', passed over between discrete measurement times ti- 1 and tl. This can occur in

high range resolution (HRR) radar when returns from individual pulses are summed over a

short time period to create a single sweep or measurement, if the aspect angle is changing

over that time. As discussed in Sect. 2.2.3, it is common practice to create one HRR sweep

for measurement by summing several dozen pulses over a period of much less than one

second. Determination of a measurement likelihood is feasible in this case also, but now

3-20



the likelihood "p(zf I [xa,. -* xG.],wi)" is path dependent, and many more cases will

have to be considered. For the demonstrations pursued in Chapter V, this issue will not

be addressed - all feature observable measurements are assumed to have been generated

at a single aspect angle location.

Finally with respect to the issue of measurement independence, we note in passing

that each zf will ideally include measurements from stochastically independent sensors and

feature spaces. This condition will provide further reduction in ambiguity between object

classes.

(2) It should be clear, and kept in mind during this development that, for any 1, p(Z f Zf_1)

p(zf I ZJ 1 ), and analogously that p(X",, I Xa-1,n) = P(Xa', I X" 1,n), as in Larson and

Peschon's development.

(3) We assume that the aspect angle state (cell) transition likelihood p(Xja+l,n I XnI ZM,w)

and probability of starting cell location p(xO,,, I Z', wi) are given by some a priori knowl-

edge about the likelihood of transitions in the aspect angle space. We will see later in

this chapter that there are a wide variety of possible sources for this "a priori" knowledge

in object recognition scenarios - we will consider various combinations of kinematic and

kinematic/aspect tracking filters and smoothers, as discussed in Sect. 2.3. For now we

will simply note that this information will be provided primarily by the observed object

translational kinematics Zd , for a given assumption of object class.

It is extremely important to note that the transition likelihood p(xa+1,,. I xj,,• Zd, W,),

fed from external sources in this way, provides a natural path for optimal sensor fusion.

The recognition and use of that fact is a significant contribution of this research, and

also distinguishes this concept from previous efforts that can be derived as suboptimal

implementations of the equations developed here. This distinction will be addressed in

sections to follow (principally Sect. 3.8.1).

(4) We assume that p(wi) (a priori) is known for each object class w2, and furthermore

that p(wi) = p(wi I Zd), that is, that the kinematic measurements and derived kinematic

state history provide no information as to the nature of the object. This last assumption

is clearly neither true nor desirable, particularly for aircraft recognition when character-
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istic trajectories for various aircraft types are classified probabilistically. However, in this

development, we wish to assess recognition improvement due to DP sequence comparison

methods only, so all objects are considered equally likely to have executed the observed

kinematic transitions.

In the event that a particular set of kinematic measurements Z4 can be associated

with a particular event (maneuver), and likelihoods of this event p(Zd I wi) are known

for each object class, another straightforward application of Bayes' Rule will allow one to

estimate p(w. I Z') explicitly as shown in Eqn. (3.3) below. This quantity then replaces

p(w1 ) in the subsequent development.

Z) p(ZI I wO)p(wi) (3.3)

(5) For high range resolution radar feature observables, we assume that uncertainties in

range bin alignment and scale factor are handled by finding MAX{ p(zf I xa, w 1 )} for any

combination of feature observable measurement z2 and trial aspect angle state x' on any

model w•, essentially following the "maximum likelihood" method discussed by Weiss and

Friedlander [222], and used by Barniv [8, 13] and others [166].

Note that this maximum likelihood approach should be used with caution for the

same reason that we hesitated to use the quantity maxx.{p(zf I x*, w,)} in Sect. 3.3 - for

"exotic" (i.e., nonsymmetric, multi-modal, etc.) probability densities, maximum likelihood-

based estimates may give significantly different answers from those given by, for example,

an ensemble weighted-average probability density (i.e., weighted over all equally possible

range alignments, in this case). Similar maximum likelihood assumptions are often made

for feature observables other than HRR radar.

3.6.2 Relating Path Probability p(Xk,, I Z Vd,w1 ) to Object Class Probability

p(w• I 4Z, Z4). Using our current variable notation, recall that Larson and Peschon

sought the state history or path Xk,, to maximize p(Xa,, I Zf) in some general state

space. Analogously in our case, trying to find a "best" path in aspect angle space over
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some model wi, we might seek a state history to maximize p(X-, Zf, ZV, w,). Following

Larson and Peschon's approach, we break this expression out as:

I• l Z,•, Z)
( k, .d p(Z) I p(Zk X , ,Z-l , d)P(XZ' I Z] 1,) (3.4)

or, equivalently, by the assumptions above:

p(X, t• • p(Z• I •,.,,,,)p(X,,,, h X7_I,,d,W,)p(xal•,,, f WO
IZk, Z, I) k M x Z M
k n k= m7 ,p(-. I p• I zZ Z z W,,,,,

(3.5)

where the denominator term is given in the usual fashion by summing the numerator

expression over all X•,n:

p(Zf I Z'_1 , ZMdw)=

N,

SP(Z4 I z• Wi) P(X•' "ZdWi)P(Xkl Zk'-Zd ,W1 ) (3.6)

Each element in the original Larson and Peschon equations has a counterpart in

this object recognition application. Thus for any given object model w1, we can con-

ceptually use the Larson and Peschon approach to find the path Xa,, which maximizes

p(Xk, ZIkZ, ,wi). Note that, whereas the Larson and Peschon approach started with

an a priori probability density p(xa), the procedure described here would start with an a

priori probability p(xo,,, I Zd, WO).

This process is illustrated in Figs. 3.3 and 3.4, using an abbreviated notation for clar-

ity. Note that in these figures, allowable starting states are restricted to an initial window

in the aspect angle region, and allowable transitions are restricted to fall from one window

to the next. This reflects an a priori judgment that other possibilities are of negligible

probability. Fig. 3.3 shows how transitions from window to window for one path (arbitrar-

ily selected from the two sample paths shown) might appear as projected onto the entire
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Figure 3.3. Typical Matching Paths - Larson and Peschon Algorithm
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Figure 3.4. "Overhead View" - Larson and Peschon Path
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allowable aspect angle region. Note that the joint probability density "p(Zf, X')" found

in Fig. 3.4 is simply a shorthand notation (i.e., not showing all appropriate conditioning

variables) for the product of the numerator terms in Eqns. (3.4) or (3.5), when k = 4.

So far, the discussion has been concerned with defining Larson and Peschon-like

conditional probabilities for the aspect angle space corresponding to one object class wi.

Now, we will modify the Larson and Peschon equations to allow us to consider the a

pr- , probability of class membership p(wi), and ultimately to define the a posteriori

probabilities p(wd) ZJ, Z%) that we seek. Assuming (with reservations as discussed above)

that p(wi) = p(wi V ), we start with the a priori probability p(w,) and then multiply by

0 Zd,w,), and continue as in the Larson and Peschon development, to obtain in an

analogous fashion:

X•, k I X=k,.'Wi P( I "k x -l'n, Zd,'W) p(Xak-ý.Wi I ZL 1 , Z%)

WI Zf Zd) _P(Zf

PG kn, 9 ki Mp(Z' I ZL 1, Zd)
(3.7)

where the denominator term is:

p(zf I Zfl, Z=

J Np

P zI X=,.,w 1)P(Xkn I 4- 1,n, Z%,W 1 pX l,,w, ,, zk ,)] (3.8)
will=' X',,n,n=l

Now sum Eqn. (3.7) over all possible X*,, for any given wi to obtain:

N,
p(Wi }Z•, Zd) = E p(Xa,, W, I Zf,Zd) (3.9)

Thus, the desired p(wi Zf, Z, ) can be found rigorously only by keeping track of, and

performing appropriate calculations for, all possible aspect angle paths over all possible

object models - that is, all X',, in 'Y over all w,. In the following section, we will repeat

these calculations using an approach closer to the actual algorithm used by Larson and
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Peschon, and then we will consider modifications that might be desired to provide more

rigorous answers, if the basic assumptions of this development do not apply.

3.6.3 Relating I*(x', k) to Object Class Probability p(wi I ZI, zIV)• Recall

that the "practical version" of the Larson and Peschon method as implemented on dif-

ferent object models wi would find the Xk,,, say Xk/ for each .;i, that maximizes

p(Xk, I Z•, Zk ,w,), not by maximizing this conditional probability directly, but rathef

by maximizing I*(x•, k), where (using the original Larson and Peschon form, but recalling

that in our development for object recognition, all probabifi ies would be conditioned also

on Zd and w1):

MAX I*(x', k) MAX [p(4 x,) p(x• I _ I*(x'_l, -- 1)] (3.10)

MAXk

or, in our form:

MAX I*(xan, I J w1 )

xk,n

MAX [p(z/ I Xanwi) p(xIt A , ,, M kl, Z Xaw/) Ia(X__l.,,k -- 1 [wi)] (3.11)

Maximizing this quantity rather than the conditional probability is desirable because

we avoid having to compute values for all Xa,, E Xpa,, which we would have to do to find

the denominator term as in Eqn. (3.6). Examining I*(xa,,, k I w1) closely, note that the

preceding equation is equivalent to:

MAX I*(xa,nk Iw1 )= MAX kp(X , k,Zk I Z,,w 1 )] (3.12)
Xk,n I

Thus, the practical version of the Larson and Peschon equations gives the maximum

value of p(X Z I Zd, w1), and the state history estimate f•p for a given w1 which

gives that maximum joint conditional probability density, or, equivalently, since there is

only one Zf, that state history which maximizes p(Xan I Z!, Zd, W,).

Suppose on the other hand that we had chosen to find p(X,,, Zfw, I Zd) for all

Xk,, E Xpk. This can be had by computing p(Xk,,,, Zk ] ZM,w 1 ) for each X?7, over each w,
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and multiplying each such quantity by the appropriate p(wi) (again, as above, taken equal

to p(w Z), with the same qualifications) to find:

p(Xk,,,, Zk I Z,w ) p(wi)= p(X 1,,,, V , %, IZ) (3.13)

But:

N,

p(w Z,Z) = Z p(Xa,.,W,, I Zf,Zd) (3.14)

or:

N, [p(XakZI , I ZdI(W IZf' d))_ (3.15)

where:

j N,

p(Z~lZ•): Z Z p(Xa,, Zf, ,,•Jz•) (3.16)
woi~j--- X•,,' n--

or:

.-I "• " ,., I Z, ) (3.1 7)p(Wi, I zf,z) Z' xN,nn=lp-k, k 7n(317k m J NEi = X, nx n, = ip (X k n, Z. , W!,• I z •d)

which is equivalent to the expression in Eqn. (3.9), requiring consideration of probabilities

for all paths Xa,., over all object models wi - an exhaustive search.

In identifying the fact that p(w, I Zf, Z") can be found properly raly by exhaustive

search, we have reached the fundamental objective of this Bayesian development. The as-

sumptions that were made in pursuing this objective can be relaxed without changing this

fundamental result, by implementing the suggestions made above where those assumptions

were introduced, and repeating the development. Summarizing key issues, those relaxed

assumptions could include: (1) allowing for an infinite number of aspect angle locations (a

continuous space); (2) allowing for the generation of a single feature observable measure-
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ment from a set of aspect angle locations, rather than one; (3) allowing for inclusion of a

priori information on maneuver likelihoods for different classes, and (4) obtaining maxi-

mum a posteriori probabilities, rather than maximum likelihoods, for signature-to-aspect

angle associations and other events where uncertainty exists in the origin conditions obr

the observed signature (due to uncertain range registration, for example).

3.6.4 Approximations for p(w. I Zf, Z'), and Associated Problems. In any

case, it is clear that the a posteriori probability p(w1 I Zf, Zd) will not be practical to

obtain - attempting to keep track of conditional probabilities for all tracks Xa,, over all

object models wi would be in general a monumental task, to be avoi6. ., t all possible.

Modifying the right side of Eqn. (3.17) to take summations over prescribed sets of X,,'s

rather than all (e.g., proper subsets of Xpak) for each w1 in Eqn. (3.17) creates a limiting

process, so that as we converge toward summations over all X, EX" for each w,, the

modified term converges toward the desired probability p(w, I Zf, Zd).

We recognize that most of the paths will contribute little to the final probability

calculations. Clearly, the path which contributes the most to the probability calculation

for each wi is the one given by the Larson and Peschon equations, CLP Therefore, ifk/wi"

we make the (extreme) choice of approximating the desired p(w, I Zf, Z') using only one

path Xan for each wi, the most reasonable such approximation would be given by (note

the "hat" over p, denoting an estimate):

•fZ ) I/ik . (3.18)
( I n , p,,, = IZ)

where, using the appropriate I*(x ,,, k I w1 ) for each w,:

pgkl, Z, , I Z/) [ MAX I(X'~,k I wi) p(wO) (3.19)
Xk,n

We assume that the aspect angle spaces for the various object models are adequately

discretized, or sampled in a Shannon sampling sense, so that variations in feature observ-

ables from one discrete aspect angle state to the next are "small" in some sense - for

3-29



example, an expected feature observable value from a (continuous) aspect angle value be-

tween two adjacent discrete aspect angle values should be well approximated as a linear

interpolation of the feature observable values for the two adjacent discrete states.

Then, progressively better approximations to p(w I Z1, Zd) would be given by sum-

ming also the contributions from paths for each w1 that pass through points X•,n in pro-

gressively larger neighborhoods around the points in Y11-P for each wi. An alternative and

perhaps better approach would be to consider some number of additional paths XA,, (for

fair comparison, the same number of additional paths for each class Wi) tracing back from

terminal points x",, that resulted in values of I*(xa,,, k I wi) closest to the maximum value

which defined XkLP A third alternative would be consider contributions from aspect angle

states that lie in between the elements of jL , but which are skipped along that path,

or not included in i•. per se. Consideration of this third alternative will lead back to

classical dynamic programming-based sequence comparison methods in Sect. 3.7.

In summary, we have obtained in this section an expression for the probability of

object class membership via Bayesian techniques, where the new information (in a Bayesian

sense) is given by feature space measurements, conditioned on the likelihood of required

kinematic transitions in the underlying aspect angle state space. This conditioning provides

the restriction of feature space matches to kinematically likely subsets, as discussed in

Sect. 2.6. Due to the assumed highly nonlinear and complex nature of the relationship

between transitions in aspect angle and feature space, we used a Larson and Peschon

estimation approach, which in general forces us to approximate by using only a finite

number (perhaps one) of likely aspect angle state sets (sequences) for each object class.

3.6.5 Obtaining "A Priori" Information for the L&P Approach. A significant

question left unanswered in the previous section is how to obtain the a priori knowledge of

aspect angle transitions, expressed as the aspect angle state (cell) transition probability or

likelihood p(Xk~ln I x',,, Z , wi) and probability of starting cell location p(x0,

In object recognition, this is simply information that we have about the object-sensor an-

gular position and rate, apart from what we may learn from the latest feature observable

measurement. If our only other source of object information is a conventional "kinematic"
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object tracker using prior and current position, (pointing) angle, and range rate measure-

ments against highly dynamic objects like aircraft capable of sudden turns, we may rightly

feel that information on angular position and rate from this source is of little value. At least

two reasonable cases for defining p(xa+1 ,, I x,,, Zdv) from kinematics exist, however.

First, if we are willing to accept non-real time estimates, we can smooth our kine-

matic measurements to provide a high-quality estimate of object velocity and acceleration.

If the object is an aircraft determined to be in a turn, with reasonably constant acceler-

ation relative to the target body frame for a period of several seconds, a smoother can

be made to yield an estimate of target state sufficiently adequate so as to allow a reason-

able determination of aspect angle from kinematic (smoother) information alone. A L&P

estimator using this concept is discussed in Chapter V.

Second, recall that the Kendrick-type filter provides a high-quality velocity and ac-

celeration estimate for aircraft targets by considering the target aerodynamic state im-

plied by aspect angle measurements. This implies a reasonable real-time estimate for

p(x'+•,,, I xa,>, Z",wi) from a Kendrick-type filter. Conversely, however, the Kendrick-

type filter requires a reasonable aspect angle estimate, which may not be available from

conventional pose estimators in some feature spaces. Such an estimate is, however, avail-

able from the L&P-type estimator, as the latest state xk in the sequence Xi'.P We will

return to this thought in Sect. 3.9.

Note that each of these two cases prescribes only a minimum-sufficient set of con-

ditions for providing reasonable a priori aspect angle transition information on aircraft

targets to a Larson and Peschon-type algorithm. In the first case, we are able to use a

simple tracking filter and kinematic measurements only, but surrender real-time operation

by the need to smooth. In the second case, we accept a more complicated tracking filter,

but recoup the possibility of real time information. If, on the other hand, we desire to have

the best possible information quality regarding aspect angle transition, the proper answer

is perhaps some form of integrated kinematic/aspect-angle filter and a smoother. Simply,

we should always be able to estimate better with more information than we can with less.
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In any case, however, we see that the time period over which kinematic measurements

.. are taken must encompass that over which feature observable measurements Zf are

taken. In the first case, the smoothing process will require that kinematic measurements

precede and follow the time interval over which feature observables are measured. In

the second case, it will be desirable that initial kinematic measurements precede feature

observable measurements, so that target velocity information is available for use with initial

ieature observable measurements. This latter case was true in Sect. 3.4.2, for which we

effectively had m - k + s with s > 1.

A final caution is in order regarding the estimation of aspect angle states or tran-

sitions from translational kinematics. The quality of these estimates is driven by (1) the

extent to aspect angle and kinematics are linked for each object class, and (2) the extent

to which we properly understand that linkage for each possible object class. For ground

vehicles for example, a fundamental problem may arise from assumptions that a vehicle is

turning on a fiat surface. For helicopter targets, aspect angle and translational kinematics

are very poorly linked in some flight regimes - in such cases, we may be able to say only

that aspect angle change with time is bounded, although with unpredictable direction.

With respect to aircraft, the reader familiar with developments in control-configured

flight will recognize that many of our concerns about the ability to predict aspect angle

from kinematic measurements arise from the new possibilities presented by these devel-

opments, relative to conventional "coordinated turn" flight. An interesting discussion of

these possibilities and underlying tactical requirements is found in [112]. Some of the new

capabilities include high angle of attack flight for maneuverability, pitch pointing for gun

aiming without change of flight path angle, zero angle of attack turns that keep the wind

vector aligned with the body Xb or longitudinal axis, and so on.

All of these possibilities complicate the problem, but do not make recognition impos-

sible by any means. If target behavior hypotheses in addition to the coordinated turn model

are feasible and expected for one or more target classes, the recognizer can be designed to

consider them. This increases the dimensionality of our problem, which is already natu-

rally expressed as a multiple model (object or target class) estimator - the fundamental

approach discussed in Sect. 2.3.1.3, whether or not the models are implemented as Kalman
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filters. However, as long as at least one of our hypotheses is close in some sense to the

actual target behavior, correct recognition remains feasible. In fact, the computation of

aspect angle estimates from translational kinematics is simpler for some of these options

(e.g., the zero angle of attack turns noted above) than for the coordinated turn hypothesis

assumed for aircraft targets here. Thus, implementation of models for these hypotheses in

a multiple model recognizer or estimator will be more straightforward than implementa-

tion of the model for the fundamental coordinated turn hypothesis. In nearly every case,

however, target kinematics provides some information about aspect angle - our intent is

to use that information.

3.6.6 Issues in the Use of Larson and Peschon Methods in Object Recognition. As

implied in Sect. 2.4.5 of the last chapter, there is a potential pitfall of a "basic" Larson and

Peschon approach as applied to object recognition (e.g., Eqn. (3.18)) - making decisions

based on but one set of k aspect angle states or one path per object model. In fact, assuming

equal a priori probabilities for each w,, the path which yields the highest I*(x•a,n, k I w1)

over all w, may not fall on the particular wi which has the highest actual a posteriori

probability p(wi I Zf, Z") of being the correct class. It may be that one model has a

particularly "well-configured" set of aspect angle states and associated feature observable

values, such that the "best" path Xvk,. on this model traverses these states, and give this

model the highest p(Xa,,, Zf I Z",wi), but if all possible Xa,, are considered, this model

is less likely to have been the origin of the observed Z1 than some other model.

An example is helpful to illustrate this issue (see Fig. 3.5). Suppose we have two

contiguous sequences of three aspect angle "pixels" each. Presume that we know that the

object presented one of the two sequences to the sensor at some imprecisely known rate

over some interval of time, including the time t,,, at which a measurement z was received.

The probability density or likelihood that p(z I z) that state z would yield the (scalar)

measurement z is taken to be Gaussian, with mean and variance shown for each pixel. Now

suppose the measured value is "z = 3.05". If required to choose between the two paths, a

basic L&P-type algorithm would choose path one, since this path contains one pixel, P12 ,

most likely to have produced the given observation.
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Path One P11  P 12  P 13

p(z x = P11): Gaussian with mean 6.0, standard deviation 1.0
p(z X = P1 2): Gaussian with mean 3.0, standard deviation 1.0
p(z X = P 13): Gaussian with mean 6.0, standard deviation 1.0

Path Two P21  P22  P 23

p(z z = P2 1): Gaussian with mean 2.95, standard deviation 1.0
p(z X = P22 ): Gaussian with mean 2.95, standard deviation 1.0
p(z X -= P 23 ): Gaussian with mean 2.95, standard deviation 1.0

Figure 3.5. Two Aspect Angle Paths

But, given our imprecise information on the transition of the sensor over these pixels,

it is perhaps almost equally likely that the first or third cells could have generated the

received measurement. Which path is truly more likely to have generated the observation?

Using the full Bayesian approach as in Eqn. (3.9) or (3.17), we would select path two.

Now observe that a classical sequence comparison or "dynamic time warping" concept

with simple continuity rules, unable to delete pixels and "skip" pixels P11 and P 13 , would

have picked path two, since, by any reasonable metric, this path is more likely over its

extent to have produced the observed z.

This example illustrates a potential weakness in L&P-based concepts for object recog-

nition by aspect angle path determination, and indeed, a caution in the use of the Larson

and Peschon method. Recall that in the Baryiv and Kramer applications of the Larson

and Peschon method, we had visibility over the individual states, i.e., cells or sequences
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of cells overlying some physical space. The origin state of a given measurement was never

ambiguous - the ambiguity lay in whether or not a given string of measurements over some

states represented a real target. This is not so in object recognition when we take, as states,

"cells" of aspect angle on some hypothetical aspect angle sphere - here we never really

know which aspect angle state (cell) generated which measurement - only that a particular

measurement was generated as a certain set of states was passed through or over.

Thus, for the object recognition application, when the number of cells or aspect angle

states outnumber the number of measurements, we are perhaps better advised to ask the

question, "given that we have traversed a continuous path over one of several hypothetical

aspect angle spheres, which sphere is more likely to have yielded the observed sequence of

discrete observations?" The issues here are precisely those discussed in relation to Fig. 3.1:

what is the relationship between the feature observables, state space, and likely transitions

on that state space as measurements occur?

One approach to working this problem is to consider contributions from multiple

trajectories as discussed in Sect. 3.6.4. An alternative approach to using the L&P format

would be classical sequence comparison or dynamic time warping-based methods. First,

one would construct sets of trajectories through the state space over the time frame of

interest, using the same information on aspect angle from kinematics used to provide

P(Xo,, I Z,,w,) and p(xj+,,n xn, Z' ,w), the a priori information for L&P-type ap-

proaches. These trajectories then imply sequences of feature observations, which can be

compared to the observed sequences using classical sequence comparison or DTW-like tech-

niques. Further, in a departure from usual DTW, we can allow the "best path" to move

from one trajectory to another. This defines a "two-dimensional" form of classical sequence

comparison, as in Fig. 2.9.

Users of Larson and Peschon-like approaches for object recognition such as those to

be demonstrated in Chapter V must keep these issues in mind. Certainly, one may conduct

studies in a straightforward Monte-Carlo manner to determine the probabilities of false or

correct class assignment when using an approximate approach like that in Eqn. (3.18),

as compared to a more probabilistically correct approach like that given in Eqn. (3.17).

It should also be clear that all such expressions for p(wi I Zf, Z`) are in fact generalized
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likelihood functions and, as such, are suitable for analysis using the techniques discussed

in Sect. 2.7, to be further discussed in Sect. 3.11.

3.7 Classical Sequence Comparison in Object Recognition.

In the last several sections, we developed the Larson and Peschon equations for ob-

ject recognition. While reviewing some potential problems with Larson and Peschon-like

approaches to sequence comparison, we observed that classical sequence comparison might

serve to overcome those problems. In this section, we will construct object recognition as

a problem in classical sequence comparison, and consider some problems inherent in this

approach. Ultimately, the lesson is that the Larson and Peschon equations and classical

sequence comparison are intimately related, and should be considered as "tools" for solv-

ing sequence comparison problems (as indeed may other algorithms, like hidden Markov

models [176], etc.) - particular tools may serve particular scenarios better than others.

All of these sequence comparison or "motion warping" tools will serve to a greater

or lesser degree to achieve our goal - restricting the matching domain of object recogni-

tion algorithms to kinematically likely sets. Thus, the "likelihood function" outputs of

these algorithms will reflect, to a greater degree than for conventional "independent look"

algorithms, the joint likelihood of observed features (signatures) and kinematics.

3.7.1 Motivating Classical Sequence Comparison in Object Recognition. In

Sect. 3.6, we constructed object recognition as a problem in Larson and Peschon estima-

tion. In this section, we will view the same problem from a classical sequence comparison

perspective. Figure 3.6 iliustrates a baseline case of sequence comparison for multiple

models. The figure shows three object models, or hypothetical aspect angle spheres, for

which discrete signatures are recorded a priori. A sequence of true signatures or feature

observables is extracted from the topmost or true object, which is of course not identified a

priori to the recognizer. Also, derived generally in the manner by which the Kendrick esti-

mator in Sect. 2.3.3 found the kinematically-implied aspect angle "pseudo-measurement,"

we have a kinematically-implied aspect path for each object model.
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Fig. 3 .6.a Model (1) - Correct Model (Not Known A Priori)

/v(t6 )1  (Feature Values Predicted from Kinematics)
Aspect Angle Paths \ '/H[x"(t)] 1 =

k- [II......:z;

-- -- Atmosphere & . .,x,,:: : : :: : l sensor - --__;
(Measured Feature Values)

Fg WARP ZI against jIkG(t)]l

Model (2) .H[Ta(t)]2 .

WAR P [Z) .... agant. ](j

Fig.~~ *.. Moe (3

Kinematic (from above)

- WARP zf against 7j[ka(t)1

Fig. 3.6.c M W g ec Anl Paeth Mo

[h33(7t, )] 3... :hfk"(t6)]3]
[zf: ...... :zf

ka~t,)3(from above)

13- _ý_ g WARP Z! against 7-/[:k(t)]3

Figure 3-6. Motion Warping - Aspect Angle Paths and Multiple Models
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Restating the problem using the variable conventions of Sect. 3.6, we have a sequence

of measured feature observable values z! extracted over time to form the measurement

history V. Each element in the history corresponds to an element in the sequence, i.e.,

an observed value, function (e.g., a radar range sweep measurement) or again a vector

of values at a particular measurement time. The kinematically-implied paths or aspect

angle state sequences are the same ones that would be found by propagating maximum

likelihood values of the Larson and Peschon a priori information p(x'+1 ,n x M,,Za,w)

and probability of starting cell location p(xO",, I Z", w,) for each object model throughout

the entire time interval of interest.

Along that "kinematic path", from each model j of J object models, we can extract

a sequence (vector) if = .W[4(t)] of estimated or predicted feature observable values

if = h[ia(t,)] for times t, corresponding to the times at which the elements of V were

observed. The labeling convention used here is as in the discussion on tracking filters

previously, but the calligraphic letter "H" or W-/ distinguishes the sequence of predicted

measurements from the measurement matrix H discussed in Sect. 2.3 in connection with

the Kalman filter.

Note that this procedure will make no attempt to use individual measured fea-

ture observable values to determine "pose estimates" for a maximum likelihood "feature

observable-based aspect path" on each model, as in Fig. 2.6. Thus, the models show no

such path.

If (1) the model class w1 corresponds exactly to the object class, (2) the object is

moving with the kinematics assumed for the model, (3) the object signature is non-random,

and (4) if our atmospheric transmission and sensors are noise-free, then ZV and W[V(t)]

will be equal. This situation is illustrated in Fig. 3.7, in which *V(tk) represents the kth

point in the sequence of kinematically-estimated aspect angles, while xa(tk) represents the

kth point in the sequence of true aspect angles. Note for future consideration that here

the kinematically-estimated and true paths trace identical aspect angles at identical times.

In general, however, these conditions will not be satisfied: (1) there will be only

one observed sequence ZV, but there will be one anticipated sequence *t[*a(t)] for each
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ia(ti) sa r) for all i, i = 1,5

Figure 3.7. Complete Correspondence Between Kinematically Estimated and True As-
pect Angle Paths

possible object (model) class, as we saw in Fig. 3.6 (the origin object class of ZI is, of

course, not known a priori); (2) the object kinematics will not be perfectly known; (3) the

object signature generation is a random process, even for constant aspect angle, and (4)

atmospheric transmission and sensors add further random noise to the signature.

Note in Fig. 3.6 that the kinematic aspect path and the true path can properly be

shown together only on one model - the true (unknown a priori) model. This is because

the true path is generated by only one model (class), not all. If the true and kinematic

aspect paths for this true model lie on the same aspect angle path, but traverse discrete

signature origin points along that path at different times, then, in the absence of other

random factors, the measured feature observable values and the kinematically-estimated

feature observable values for the correct object model will be equal except for sections

of relative compression and expansion. These differences between the resulting sequences

can be resolved with the usual "one-dimensional" classical dynamic programming sequence

comparison, or "warping" process discussed in Sect. 2.4.2.

The warping process takes place between the elements of V and each ?7[ia(t)] -

the pairing of V and some fi[ia(t)] for which the dynamic programming-based sequence

comparison cost is least is taken to indicate the correct class wi for the object which yielded

V. We may note also that, in general, the two sequences to be compared need not have an
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equal number of elements. Dynamic programming-based sequence comparison techniques

handle small mismatches in the total number of elements naturally by "expanding" the

shorter sequence as required to achieve a best comparison.

Where the true path and kinematic path lie side by side, or cross, we will call this a

condition of "off-nominal path" errors, where the nominal path is in fact the kinematically-

estimated path. Off-nominal path errors are expected to be due to errors in modeling or

estimation of aspect angle from kinematics, as discussed in Sect. 3.6.5. Consider Fig. 3.6.a

as representing a case of a nominal aspect angle path and the true path separated by an

off-nominal error. Off-nominal path errors cannot be accounted for by "one-dimensional"

classical sequence comparison or "warping", but if the off-nominal path error is reasonably

small and the feature observables are reasonably constant in directions normal to the two

paths, it may still be possible in general to remove some portion of the errors due to

compression and expansion, and perhaps to identify the best object-model match over the

whole trajectory.

It should be clear that most of the illustrations so far in this chapter have shown the

general case in which we have off-nominal path errors. If we attempt only a single "one-

dimensional" sequence comparison for each model, it is possible to conceive of situations

in which off-nominal path errors would lead to misclassification.

As implied in the discussion of Sects. 2.4.3 and 2.4.5, however, extensions to clas-

sical sequence comparison can deal directly with off-nominal path errors. Rather than

comparing our observed sequence to a single one-dimensional sequence from each object

model, we may compare our observed sequence to a number of sequences taken from a two

dimensional aspect angle region on each object model, as shown in Fig. 2.9.

3.7.2 Implementing Classical Sequence Comparison in Object Recognition. The

implementation of one and two-dimensional sequence comparison techniques on a multiple-

window aspect angle region is illustrated in Fig. 3.8. This figure uses the visual format

common to our earlier discussions.

The dotted line labeled "1-D Track" in Fig. 3.8 shows a "one-dimensional" set of

aspect angle states against which classical sequence comparison is attempted. It is very
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important to note the relationship between Fig. 2.8 and Fig. 3.8 - the first figure is func-

tionally identical to what we would see by viewing Fig. 3.8 from the right side, for any one

path. A "window" in Fig. 3.8 is directly analogous to a horizonal layer of circles between

the dotted lines in Fig. 2.8.

The continuity constraints for motion warping by one dimensional classical sequence

comparison are again directly related to those for dynamic time warping and similar con-

cepts. The global path bounds (dotted lines in Fig. 2.8) are defined by the individual

window extents shown in Fig. 3.8. The 1-D local continuity constraints in Fig. 3.8 are

exactly those of Fig. 2.8, except that vertical transitions have been forbidden, for rea-

sons to be discussed below. Thus, relative to some "current" point for which costs are to

be computed, the predecessor points may he to the rear on the same window (horizontal

transition), or one step to the rear and down on the previous window (diagonal transition).

Note that a horizontal transition corresponds to associating the same measurement

with more than one element in the aspect angle region, while a diagonal transition corre-

sponds to a transition from associations for one measurement to associations for the next

measurement. The 2-D local continuity constraints in Fig. 3.8 are a simple extension of

t_'ie 1-D local continuity constraints, allowing for a predecessor point to be located to the

right or left of the current point - that is, on a neighboring track parallel to the direction

of expected aspect angle change.

The only additional continuity constraints are ones that provide for minimum and

maximum numbers of horizontal associations or transitions on each window - that is, a

given measurement or observation must be associated with a minimum number of aspect

angle cells, but cannot be associated with more than some maximum number of cells. More

complicated continuity rules can limit multiple consecutive diagonal transitions, or allow

skipping cf aspect angle cells ("deletions" from the object signature map, in the sense used

by [195]), and so on.

Vertical transitions are forbidden in our case since a vertical transition implies that

no aspect angle transition took place between two measurements - two successive mea-

surements are associated with the same aspect angle location. This will be practically

3-42



impossible for the scenarios in which this algorithm will be applied, and is therefore ex-

cluded from consideration here. In some scenarios (e.g., stationary targets), it may be

necessary to provide for vertical transitions in the continuity constraints. Also, for cases in

which there are more aspect angle cells in the direction of likely transitions than there are

measurements to be associated, elimination of vertical transitions helps to prevent undesir-

ably short association paths in the warping path space (associating the measurements with

too few aspect angle locations). We will return to the subject of path length compensation

in Chapter V.

Resilience to off-nominal path errors was of course a strong point for Larson and

Peschon-based approaches defined ir. Sect. 3.6. These approaches naturally worked on

two-dimensional aspect angle regions, and allowed one to quantify the effect of off-nominal

path errors, in a Bayesian probabilistic structure.

The differences between sequences expected from kinematic measurements and ob-

served sequences may be more complicated than the simple off-nominal errors shown above.

Fig. 3.9 illustrates a case in which the true aspect angle path actually doubles back on

itself for a short period. Here, this "wobble" is not picked up by the kinematic sensors and

thus is not reflected in the kinematically-derived aspect path.

Note that if a linear (non-warped) sequence comparison were made between the

kinematic and measured sequences (assume negligible sensor noise on the feature observable

measurements) the effective aspect angle pairings would be as shown in the first point-to-

point association below Fig. 3.9. With dynamic programming-based sequence matching

techniques, however, we should be able to determine that a more reasonable match is as

shown in the second point-to-point association below Fig. 3.9.

Dealing with cases like the one shown here will require us to be careful in designing

those continuity constraints (see Sect. 2.4.2) employed to restrict the dimensionality of

dynamic programming decisions. These may prevent us from making certain optimal

point-to-point assignments. In the case in Fig. 3.9, for example, we would probably desire

to associate point xk' with point x', but since point xV is associated with point x4, the

former, desired association will be prohibited in classical sequence comparison - this would
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amount to moving backward in the dynamic programming assignment matrix. "Backward"

path options are generally forbidden in classical sequence comparison to limit the Curse

of Dimensionality.

These classical sequence comparison continuity constraints, or p(xk+1 I x,;) in the

Larson and Peschon formulation, or other restrictions on aspect angle transitions, can be

tuned to allow the sequence comparison process to include such folding or other errors in

the estimate of aspect angle transition from kinematics. Any loosening of restrictions must

be done carefully, however, because we want the restriction of matching paths to reasonable

aspect angle progressions to be the significant factor which increases matching costs for

incorrect object-model associations.

3.8 Sequence Comparison Concept Relationships

At this point, we have established four concepts for the use of dynamic programming

in dynamic object and target recognition: (1) The Larson and Peschon approach, (2)

classical sequence comparison techniques (including dynamic time warping), (3) the Le

Chevalier (et al.) approach, and (4) the Mieras (et al.) approach. This section will

illuminate the differences and similarities in these approaches.

Fig. 3.10 is provided as an aid for this discussion. It is intended to show relationships

or the lack thereof between concepts that relate to the author's original research, which

is noted in the boxed region. Fundamentally, the author's research blends concepts from

two fields - linear (and linearization-based) estimation and dynamic programming. The

author's conceptualization of dynamic programming as a tool for moving object recogni-

tion was preceded independently by, but includes and transcends, the developments of Le

Chevalier and Mieras - to represent them specifically as applications of dynamic program-

ming sequence comparison for automatic object recognition (AOR) of dynamic objects,

these names are contained in double boxes.

The key point expressed in the upper portion of Fig. 3.10 is that dynamic program-

ming sequence comparison can be seen to be applicable to multisensor fusion for dynamic

object recognition through at least three different paths. The leftmost, or speech process-
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ing path (the author's original inspiration), lists researchers whose efforts were discussed

in Sect. 2.4.2. The center path is Le Chevalier (Sect. 2.5.7), whose syntactic approach is

also fundamentally language-inspired. The rightmost path is that begun by Larson and

Peschon, whose equations were applied for tracking by Barniv, as described in a recent

text on multisensor fusion [8], and which served through earlier sources [12, 13, 129] as the

inspiration for Mieras (Sect. 2.5.8).

The lower portion of Fig. 3.10 refers to the origins of the linear or linearization-based

estimation and estimator evaluation techniques applied in this research, as discussed in

Sect. 2.3.1.1 and 2.7, respectively. It should be clear also that Bayes' Rule plays a key role

in the basic Larson and Peschon equations, but this connection is not shown for reasons of

clarity. The fundamental contribution of this research is the fusion of information from the

upper and lower portions of this figure, using Bayesian methods where possible, to provide

new understanding of, and new approaches for, dynamic object recognition.

3.8.1 Contrasting Prior Efforts with the Author's Research. We now address the

relationship between the Larson and Peschon approach advanced in Sect. 3.6, on one hand,

and the Le Chevalier and Mieras concepts on the other hand. Simply, it is clear that both

the Le Chevalier and Mieras concepts are sub-optimal implementations of the Larson and

Peschon equations, in aspect angle space.

Le Chevalier's development effectively reduces the Larson and Peschon conditional

transition likelihood p(xk+l I xk) to "evolutionary constraints" of unspecified form, and his

measurement-to-possible origin state comparisons do not preserve the general probabilistic

meaning J the Larson and Peschon term p(zk+l I xk+), although Le Chevalier's inter-

signal Chi-square metric is related to this form of a likelihood. Similarly, Mieras has

reduced the transition likelihood to a hard "yes/no" association limit based on whether or

not an earlier measurement/aspect angle pair (or terminus of a path of pairs) lies within

the "association gate" of a later measurement/aspect angle pair (accounting evidently also

for an aspect angle bias in the appar-nt direction of motion [162, 163]). Like Le Chevalier,

Mieras uses a probabilistic measurement-to-state metric (as discussed in Sect. 2.2.3).
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In effect, Le Chevalier and Mieras effectively replace the aspect angle state transition

likelihood p(xj+i,n I xj,,., Z", w1) with a uniform probability density, the extent of which is

defined by aspect angle transition bounds allowable by vehicle kinematics. For Le Cheva-

lier, where the aspect angle transition bounds are evidently circular around each candidate

current or prior aspect angle state, the uniform probability density can be further described

as zero mean. For Mieras, the mean is biased in the apparent direction of motion. For

both Le Chevalier and Mieras, the probability of starting cell location p(xo,n I Zd, W1 ) is

treated as equal for all starting states, or effectively ignored. This "fixed bound" approach

is illustrated in Fig. 3.11, using the multiple-window format common to earlier figures in

this chapter.

Recalling our comments in Sect. 2.6.2, we can see that this fixed bound approach is a

reasonable restriction of the domain of the likelihood functions which match feature observ-

able measurements to object signature libraries. Thus, fixed bound restrictions promise

improved recognition performance over algorithms which do not restrict that domain. How-

ever, these fixed bound approaches cannot make full use of the information content in the

transition likelihood p(xj+l,n I x,,, ZO,w1 ). As we will see in Chapter V, the practical

effect of this suboptimality is that, where high quality transition likelihood information is

available, fixed bound algorithms have a greater tendency than more optimal approaches

to allow unlikely aspect angle transitions. This means that, in comparison to more optimal

approaches, fixed bound approaches will have a greater tendency to misclassify a target,

or to estimate the aspect angle sequence on the true target incorrectly.

3.8.2 Contrasting Classical Sequence Comparison-Based vs. Larson and Peschon-

Based "Motion Warping" Concepts. At this point, we can express the difference between

classical sequence comparison-based and the Larson and Peschon-based "motion warping"

concepts (including those of Le Chevalier and Mieras) in terms of how two sequences

(observed and library model-derived) are compared to each other, and what information

is used.

This comparison revolves around two points: recall the discussion in Sect. 2.4.5 to

the effect that (1) the Larson and Peschon equations are an elaborate forward dynamic

3-48



Window for zf

Window for z4 -

Window for 4

Window for z1

Aspect Angle Region Presumed To Produce
z f = f. , ..., .• }

Figure 3.11. Typical Matching Path - Fixed Bound Algorithm

3-49



programming-based sequence comparison technique with a probabilistic metric and con-

tinuity rules, and (2) that the continuity rules in the Larson and Peschon equations are

further restricted to require deletion of as many points as required from the library set to

match the unknown set, point for point.

First, in classical sequence comparison-based motion warping, we "pre-warp" the

aspect angle space using a priori kinematic information in a preliminary attempt to predict

a sequence of observations, and then use dynamic time warping-like techniques to make

the final comparison. In the Larson and Peschon-based concepts, we warp the observations

to fit a like number of elements in the aspect angle space. Use of kinematic information in

L&P techniques may vary from explicit inclusion of transition likelihoods at one extreme,

to simple feasibility bounding at the other extreme.

More specifically, in classical sequence comparison the "pre-warping" process, i.e.,

laying out the aspect angle space along the kinematically-estimated nominal aspect angle

path, has the effect of organizing the aspect angle space according to the maximum prob-

able transition rate, or simply reordering the x' in time in accordance with the maximum

P(x'+, I x4) for all x". The motion warping process then considers deviations around this

nominal. This is the key difference between classical sequence comparison and a Larson

and Peschon-type (Le Chevalier/Mieras) approach, which works on an "unwarped" aspect

angle space directly, considering p(xa+1 I xa) or some less elaborate transition constraint

explicitly in each transition decision.

Second, compare Figs. 3.3 and 3.4 to Fig. 3.8 to observe how classical sequence

comparison in general forces every library signature along some contiguous aspect angle

path to associate with the observed measurements, while L&P-based techniques can allow

the algorithm to ignore unlikely associations. The potential pitfalls of this issue were

observed in Sect. 3.6.6. The "basic" Larson and Peschon concept is a sequence comparison

technique calling for m observations to be matched one-for-one with exactly m points on a

model. Thus, as implied above, Larson and Peschon-type approaches (including those of Le

Chevalier and Mieras) can result in picking a "nice" sequence of points from an otherwise

inappropriate model. Classical sequence comparison, or path warping concepts, however,
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may be less likely to make such an inappropriate choice, due to their tendency to allow

association of dissimilar numbers of the elements of the two compared sequences [195].

These differences are perhaps indicative of a fundamental difference between the

L&P approach and classical sequence comparison. Classical sequence comparison is based

on comparing discrete observations of an underlying continuous or piecewise continuous

feature space, at an observation frequency which (in a Shannon sampling theory sense)

captures the spatial variational trends in the feature observable values. The LUP approach

does not require that assumption, and indeed seems designed to make the best possible

decision where that assumption cannot be made.

Finally, comparing classical sequence comparison side-by-side with a Larson and

Peschon-type algorithm reveals a subtle possible practical advantage for the classical ap-

proach. Note that, in the one-dimensional classical algorithm with "basic" continuity

constraints (Fig. 3.8), each aspect angle cell in each window has at most two possible

predecessors, compared to Larson and Peschon (L&P)-type algorithms (including the Le

Chevalier and Mieras algorithms), where predecessors for each aspect angle cell in each

window may include many cells in the previous window (particularly some which imply

"backward" motion of the object). Since dynamic programming computational load is

driven largely by the number of states and predecessors (dimensionality), it is clear that

classical "continuous" sequence comparison with simple continuity constraints may have a

potential for reduced computational load.

3.8.3 Comparing Use of Kinematic Information in the Author's Research with the

Le Chevalier / Mieras Concepts. Neither the Le Chevalier nor Mieras approaches make

optimum use of the rich information available from kinematic measurements regarding as-

pect angle states and transitions, the approach that forms the core of the author's research.

Le Chevalier's writings do not specify how the "evolutionary constraint" parameters

would be obtained for the target identification case. As noted in Sect. 2.5.7, his insistence

on "real time" operation and his apparent unwillingness to model and propagate the target

kinematic state imply that he does not use a smoother or target kinematic state estimator,

and therefore has little knowledge of the likely aspect angle transition of the observed
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target - only that that transition is bounded. In the Mieras approach, the "evolutionary

constraints" are apparently fixed, but the constraints are evidently biased in the direction

expected from kinematic tracking [162, 163].

In motion warping with the full Larson and Peschon approach, the "evolutionary

constraints" are functions of the object kinematic state and state covariance estimates, as

derived from an extended Kalman ifiter/smoother operating as discussed in Sect. 3.6.5.

This procedure will be described in full detail in Chapter V. Thus, kinematic information

is maintained and fused in the same Bayesian probabilistic framework as feature observable

information. With "classical" sequence comparison approaches, we at least constrain the

matching process to follow aspect angle trajectories wt'.n maximum a priori likelihood
p(,a+ I Xa).

3.8.4 Advantages of Predecessor Approaches. The reader must not be lea.6 with

the impression that the Le Chevalier and Mieras approaches would be less effective in

every case than full or "optimal" implementation of the Larson and Peschon approach

or classical sequence comparison methodology. As with every class of pattern recognition

algorithms, the decision to employ more or less complex implementations requires trade-

offs considering feature space, information and time available, computational burden, and

so on.

As our results will show, basic L&P approaches like those of Le Chevalier and Mieras

can make a substantial discrimination improvement by restricting the wild aspect angle

transitions (and unreasonable low-cost matches) attempted on incorrect object classes by

an "independent-look" recognizer (i.e., a conventional matching algorithm, as described in

Sect. 2.2.1) working in a noisy signature domain. However, these "aspect angle bound"

algorithms can allow apparent aspect angle transitions that are inconsistent with the ob-

served kinematics, such as aspect angle sequences that stop or move in the opposite di-

rection from that implied by the observed kinematics - even when a set of observations is

matched to the correct object class.

These effects are often exhibited in our tests, particularly for incorrect matches, and

suggest that subsequent processing of these aspect angle sequences and/or inclusion of
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additional (ideally independent) feature observable measurements in each zf is warranted

to improve classification. The Mieras algorithm is believed to apply the former, or sequence

processing approach [162], which may be a significant improvement over the approach of Le

Chevalier et al. [136]. It is important to note that the tests conducted by Le Chevalier et

al. were conducted in a one-dimensional (great circle) aspect angle space, where this

"wandering" would have been less noticeable.

The apparent advantage accrued by these "aspect angle bound" approaches is that,

theoretically, they can be made to be "real time", since they do not require the time de-

lay required to develop the kinematic measurement-derived aspect angle rate estimate, or

p(Xj+l,n x,, ,, ZM, wi) given by a kinematic tracker/smoother combination. As we noted

above, however, for aircraft targets, body angular rates can be on the order of hundreds

of degrees per second, and are unobservable to the kinematic trackers generally used to

find "global" aspect limits or "windows" for feature observable-matching recognition algo-

rithms. Thus, it seems clear that one may need to accept delays of up to a few seconds

and some form of smoothing to provide any reliable aspect angle estimates from kinematic

(translational) measurements alone. If the target is determined to be turning during this

period, that kinematic information can and should be used explicitly.

Chapter V will contrast the performance of various conventional and dynamic pro-

gramming-based pattern recognition approaches using generalized ambiguity functions.

The following section describes how multiple model Kalman filter parameter estimators

and dynamic programming sequence comparison methods can be combined to address

shortcomings in each respective approach. The result is a a new class of estimators that

can fuse kinematic and ambiguous feature observable information in real time.

3.9 A New Class of "Coupled" Estimators for Object Recognition

In Sect. 3.4, we used Kendrick-type kinematic/aspect-angle estimators in a classi-

cal multiple model / residual analysis structure to give an expression for the probability

of object class membership via Bayesian techniques, where the new information is given

by kinematic measurements and aspect angle pseudo-measurements, conditioned (implic-

itly) on feature space measurements. Conversely, in Sect. 3.6, we used the Larson and
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Peschon (L&P) approach and Bayesian methods to find an expression for the probability

of object class membership, where the new information is given by feature space measure-

ments, conditioned on the likelihood of aspect angle transitions, as implied by kinematic

measurements.

We observe that Kendrick-type kinematic/aspect-angle estimators work poorly where

inadequate estimates of aspect angle are provided, and conversely that L&P estimators

work poorly where inadequate a priori information p(xa+1 I xa) is provided. If these two

forms of information processor are used jointly, however, we can use Bayesian techniques to

obtain a practical expression for the probability of class membership conditioned jointly on

feature space and kinematic measurements. This is a major objective of this dissertation

research, and provides Step Three in the three step process outlined at the start of this

chapter.

These last observations allow us to envision a new class of "coupled" filter structures,

in which conventional filters and /or smoothers perform linear or linearized estimation tasks

appropriate to them, and counterpart Larson and Peschon estimators perform nonlinear

estimation tasks to which they are suited. The key point to recognize is that the L&P

aspect angle path fk/," in fact provides a maximum likelihood aspect angle estimate for

each object model wi at any time tk. This aspect angle information from the L&P estimator

can be passed to the conventional filter as a pseudo-measurement, and information from

the conventional filter is made available to the L&P estimator as "a priori" information.

Judgments as to the "joint likelihood" of measurements and states can be made then, using

information from both sources concurrently.

At any particular measurement time tk, an estimate (estimate because we consider

the L&P path only, as in Eqn. (3.18)) for the joint likelihood of measured kinematic and

feature observables and selected state values is given by:

kiwi k k h +8-- 17 k- 11WO)
-jL f I• Zd ZJ_ Wi) = V +_•

zw f +_1 k, l[p(z n n+f7 n z_ (3.2o)
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so that, using Bayes' Rule, we obtain the desired a posteriori probability of class member-

ship as:

I Z1, -

{pOWi, Zf I Zd"_+5 _, Z I.=,I) flk1 [p(zd, ir I zd+,_. Z w W) (
k/W~l~ k- k ) n n _ _ n 1W (3.21)

{p(xk/Pj, zI zI ,)A p.,*• I +_1,Z Zl,w1 )1}p()j)Ewj,j=I ^/ kP ] ksld n-r n n n nr AWA~

where all quantities are as defined earlier. Note, however, that since the Larson and Peschon

transition likelihoods are now functions of previous feature observable measurements, thep(:j LP iZ ! d+. 1

Larson and Peschon joint probability density expression k3(~4/•,, Z7 IWZJ+, Z- w)

now contains the term ZfAl as a conditioning argument, which it did not in Sect. 3.6.

It is important to note that the representation given in Eqn. (3.21) is but one in a

class of such representations. First, following the comments in Sect. 3.6, we may choose

to add contributions to the likelihood of the observed feature measurements from paths

other than the L&P path X,�f. Second, the choice of kinematic/aspect estimator models

is completely open to the designer. The estimator to be demonstrated in Chapter IV is,

for example, similar to but also significantly different from the Kendrick/Maybeck/tReid

and Andrisani et al. estimators.

A key point about this recognizer is that theoretically, it can work in real time, un-

like the recognizers discussed in Sect. 3.6.5 and Chapter V, which nominally must employ

smoothers against highly dynamic objects (i.e., aircraft). To attain the same state estima-

tion accuracy, however, such real-time designs would require in general considerably more

complicated filter models than smoother-based designs.

3.10 Assessing the Proposed Recognizers as Syntactic Approaches

Recalling the discussion in Sect. 2.2.2, it becomes clear that each of the three proposed

object recognition approaches is syntactic in nature. For the second and third approaches,

employing classical or Larson and Peschon "variant" dynamic programming-based sequence
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comparison, this relationship is made clear by the association of DP sequence comparison

and syntactic approaches in Miclet [1611 and Le Chevalier [136].

The first approach, using conventional filter residuals and relat,i. quantities only, is

recognized to be syntactic when we consider that presentation of observed quantities in

the proper time order to the J filters is absolutely essential to their function. As with an

automaton classically used in syntactic recognition, the correct conventional filter model

reveals itself by remaining in an acceptable "state" as it processes the observed sequence -

this acceptable state is simply obedience to proper behavior of the residual sequence as

discussed in Sect. 2.3.1.3. This observation is equivalent to that made by TI-'rrien [211], in

which he associated residual sequence analysis methods with classical syntactic theory [88].

3.11 Evaluating Algorithm Performance

3.11.1 Introduction. This section provides approaches for evaluating the per-

formance of the object recognition algorithms proposed in this chapter. In particular, we

wish to motivate the use of the generalized ambiguity function (GAF) for evaluating algo-

rithm performance, and for providing insights not available from conventional evaluation

techniques.

3.11.2 Conventional Performance Evaluation. The conventional approach to

evaluating object or target recognition algorithms is to (1) define objects or targets of

interest, (2) obtain real or simulated sensor data for these objects, (3) choose a set of

noise-corrupted measurements from one particular object to represent a true, umclassified

a priori object, and (4) evaluate the ability of any given algorithm to identify correctly the

object that generated those measurements. A correct identification eveat may be defined as

one in which the value outpat by an algorithm "tuned" for the correct object (unknown a

priori) is higher than any of the values ;,,itput by the same algorithm "tuned" for incorrect

object classes. Conversely, an incorrect identification is one in which an improperly-tuned

algorithm gives a higher output value than that of the properly-tuned algorithm. Thresh-

olds may be established for the differences between two or more recognizers to meet some

confidence level prior to making a decision.
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This approach typically quantifies performance in terms of percentage of correct or

incorrect identification for any algorithm, true object, measurement set, and false object

set. The "best" algorithm is typically taken to be the one which has the highest percentage

or probability of correct identification for some particular set of objects and scenarios. Each

of the approaches considered earlier in this chapter can be evaluated in this fashion.

3.11.3 Performance Evaluation with the Generalized Ambiguity Function. On the

other hand, the generalized ambiguity function, as discussed in Sect 2.7, presents an entirely

different approach for analyzing object recognition system performance. To understand

this, we must relate the parameter estimation concepts of (1) states, (2) parameters, and

(3) measurements to the corresponding forms appropriate for object recognition. Then, we

will consider object recognition algorithms as generators of likelihood functions, the mean

values of which for particular measurement sets and scenarios define generalized ambigu-

ity functions. Finally, we will discuss how generalized ambiguity functions demonstrate

improved recognition through fusion of kinematic and sensor signature information.

All object recognition algorithms can in fact be interpreted as likelihood functions in

the sense used by Rao [184:353] and Maybeck [154:75]- whether or not their outputs provide

the classical likelihood value p(z I fl), i.e., the probability density of some measurement z

given that the state and parameter set fl is being observed. As discussed in Sect. 2.6.2, all

that we require is that the output value of a likelihood function L, defined for a particular

set R) of states and parameters, operating on measurements from a process with that

set of states and parameters, should be greater than the output value of any analogous

likelihood function defined for another set of states and parameters, operating on the

(same) measurement set from process ft.

The particular form of object with which we are most concerned in this research is the

fixed wing aircraft. The concepts of "states" in classical aircraft recognition and parameter

estimation do not differ widely. In aircraft recognition, the fundamental states of interest

are the six degrees of freedom -- translati. n and rotation with respect to some reference

(and higher derivatives of these quantities) - for the target aircraft. Taken together with

the corresponding statcs for the sensor platform, these states dictate the appearance of the
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target aircraft to the sensor. Other "states" may be of interest as well - engine speed and

temperature, orientation of objects on the target relative to the target body frame, and so

on. Similarly, the concepts of measurements in aircraft target recognition and parameter

estimation are identical.

The concept of "parameters" in object recognition, however, is not well defined -

extending this concept is key to this research. Intuitively, a real object must only be repre-

sentable as an infinite dimensional vector, and there may be any number of ways to define

"basis vectors" or individual dimensions in the corresponding vector space. For example,

for aircraft targets, one might define an abstract parameter space based on classical aircraft

design features - fuselage length, diameter, wingspan, and so on. Clearly, such a parameter

space could have both continuous and discrete (e.g., number of engines) attributes. One

set of basis vectors might serve as well as some other to define objects and behavior of

interest. A particular question arises immediately regarding fidelity of necessarily finite-

dimensional models versus infinite-dimensional truth - how many parameters of what kind

are required for a model to achieve a given level of closeness (with respect to some metric)

to true behavior? This research does not address that question per se, but will motivate

the need for further research in that direction in Chapter VI.

Classical object recognition evaluation approaches, as discussed in the previous sec-

tion, sidestep the question of parameter spaces by considering only discrete points in that

space corresponding in some sense to known objects. Classical approaches evaluate the

performance of recognition algorithms at these points, but not elsewhere.

In evaluating a recognition algorithm, however, the performance of that algorithm

against objects in some sense "in between" real objects of interest should be importan

as well. For example, in general we should probably prefer (1) a "robust" algorithm that

returns high likelihood function values for objects close in some sense to the design object,

over (2) an algorithm which fails utterly (returns low likelihood values) when presented

with measurements from a object with only minor variations from the design object. On

the other hand, if we truly wish to identify small variations from some design point, such

a robust algorithm may be utterly inadequate. Consider the case in which we desire to

distinguish an F-4G ("Wild Weasel" air defense suppression variant) Phantom II from
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an F-4E (standard multirole tactical fighter) Phantom II: a robust algorithm would be

counterproductive.

The intention here is not to propose definitive models or rules for considering object

parameter spaces. The point is simply that the use of the generalized ambiguity function in

object recognition forces one to consider the existence and significance of these spaces, and

provides a natural tool for evaluating recognition algorithm performance as the algorithms -

likelihood functions - are "tuned" over various domains in these spaces. In Chapter VI,

we will consider other implications of the concept of object parameter spaces.

The aircraft model format used in Chapter V to evaluate "motion warping" algo-

rithms offers one natural approach for defining "pseudo-objects" or object parameter sets

in some sense in between real objects of interest. That chapter will discuss the definition

of particular objects and "pseudo-objects" of interest. Likelihood function values are then

defined for each of these points, and output values are found for each likelihood function

operating on measurement sets from a "true" object. Note that likelihood functions are

distinguished here from one another according to (1) their form or structure (the way

they use information); and for functions with the same structure, (2) the particular object

signatures they are tuned to identify.

It is important to note that this will entail a "Monte Carlo" evaluation of the general-

ized ambiguity function - analytical evaluations of the integral expression Eqn. (2.37) for a

"motion warping" likelihood function appear intractable, due to the presence of numerous

nonlinearities. For scenarios in which a completely linear, Gaussian description of the joint

conditional density fzln, (Z I flt) could be obtained, however, an analytical evaluation of

the ambiguity function (Eqn. (2.37)) for this classical likelihood function (in natural log

form) also could be obtained, as in [1521.

Now, consider contrasting (1) the ambiguity function for an object recognition al-

gorithm which fuses kinematic and feature observable information with (2) the ambiguity

function for an object recognition algorithm which uses feature observable information

only. How should they differ?
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The discussion in Sect: 2.6.2 answers this question - when a set of measurements is

matched to the wrong object model, or "point" in parameter space, a kinematic/feature

observable fusion algorithm is more likely to yield lower likelihood function values than

one which does not consider kinematics. With reference to Eqn. (2.37), we consider that

as the parameters y in fl change, a likelihood function restricted by kinematics will have

a smaller chance of (improperly) finding a high likelihood function value somewhere in a

large allowable aspect angle extent than a likelihood function which is not restricted by

kinematics.

Since the generalized ambiguity function is the mean value of the likelihood function,

then, the kinematic/feature observable fusion algorithm should provide a more sharply

peaked, or less "broad" generalized ambiguity function, having greater curvature at the

correct parameter value than methods that do not fuse information from feature observ-

ables and motion. This reduced ambiguity implies increased discrimination capability

for the recognition algorithm which fuses kinematic and feature observable information.

Chapter V will show this behavior graphically.

Finally, recall from Sect. 2.7 that the curvature of the generalized ambiguity function

at the correct parameter value is directly related to the Cramdr-Rao lower bound for

the covariance of a parameter estimate by that likelihood function. This means that by

choosing to consider continuous parameter spaces in object and target recognition, and

by using the generalized ambiguity function, we can define the Cramdr-Rao lower bound

as a measure of relative performance for our recognition algorithms - whether or not

the likelihood function is the classical likelihood function p(z I wi). In classical target

recognition at least, this approach has evidently never been proposed.

3.12 Chapter Summary

The goals of this chapter were to propose new approaches for recognition of dy-

namic objects in general and aircraft targets in particular. These new approaches were

advanced by defining estimators to provide: (1) the likelihood of kinematic measurements

and pseudo-measurements conditioned on feature observables, (2) the likelihood of fea-

ture observable measurements conditioned on kinematic measurements, and (3) the joint
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likelihood of kinematic and feature observable measurements. We then used these likeli-

hoods with Bayes' Rule and a priori probabilities to propose object recognition algorithms.

Finally, we considered tools for evaluating the performance of these algorithms.

The following two chapters will show results from algorithms of the first two types,

indicating the potential for improved object recognition from all three approaches, by

comparison where possible with classical techniques that do not fuse kinematic and feature

observable information. Both classical techniques and generalized ambiguity functions will

be used to assess performance.

The theoretical and practical contributions of the effort described in this chapter are

major. They encompass the essence of this dissertation, and include:

(1) Extension of conventional multiple model residual sequence analysis techniques and

kinematic/aspect-angle trackers to provide new methods for object and target recognition,

in particular where sensor measurements are not linearly predictable.

(2) Extension of the Larson and Peschon equations to provide new methods for object

recognition using measurements from ambiguous feature observable spaces, considering a

priori information from kinematics and other sources as to the likelihood of transitions on

the underlying aspect angle state space.

(3) Extensions of the theory and practice of classical sequence comparison to include feature

observable sequences arising from an aspect angle subspace.

(4) Combination of the Larson and Peschon equations with conventional linear estimators

to provide a new form of estimator, suitable in particular for object recognition with am-

biguous feature observables, generated from dynamic subspaces that exhibit linear behavior

in some respects.

(5) Through contributions (1) through (4) and application of Bayes' Rule, several new

approaches for multisensor fusion to obtain an a posteriori probability of object class

membership, conditioned jointly on kinematic and "nonkinematic" or feature observable

information and a priori information for each known object class.

(6) Identification of a new method for evaluating object recognition algorithms - the gen-

eralized ambiguity function.
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(7) Extension of classical parameter space concepts into the field of object and target

recognition.

(8) Through contributions (6) and (7), identification of a practical approach for obtaining

a Cram6r-Rao lower bound for dynamic object and target recognition algorithms.

The remainder of this dissertation will demonstrate and elaborate upon these devel-

opments. Chapter VI proposes extensions to the author's efforts.

3-62



IV. Residual Analysis for Sensor Fusion and Object Recognition

4.1 Introduction

In this chapter, we will propose a kinematic/aspect-angle tracking filter design for

aircraft target recognition, and use it for residual/state analysis and Bayesian parameter

estimation methods, as discussed in Sect. 2.3.1.3. The purpose of this effort is to demon-

strate "Step One" as proposed in the introduction to Chapter III - the use of multiple

model/residual sequence analysis approaches for recognition of objects having "coupled"

state dynamics models, using kinematic and feature observable measurements, without

explicitly considering residuals in the feature observable space.

The efforts in this chapter were inspired originally by the simple observation that the

performance of Kendrick et al. and Andrisani et al. trackers (see Sect. 2.3.3.1) must be

very sensitive to proper choice of target model. Using the classical residual sequence anal-

ysis approach, we will exploit that sensitivity by noting that when a particular association

of (1) measurements from an unclassified target and (2) fiter target model fails to pro-

vide expected residual and/or state behavior, that association is suspect. Conversely, the

association that exhibits the "best" residual/state behavior may be taken to indicate the

correct target class. Finally, information of this kind from many different measurement

sources and particular states can be treated using Bayes' Rule for proper probabilistic

"weighting" to obtain a maximum a posteriori estimate of target class.

The proposed filter design is by no means uniquely suited to this application - the

distinguishing attribute of the filter shown here is extreme simplicity. It is designed more

to fail well when it should fail than to track well in a variety of situations - the key point

is that robustness to incorrect target model choices is not a virtue in this application.

4.2 A Tracking Filter for Target Recognition

4.2.1 Design Philosophy. In App. C, the reader will observe that the Kendrick

et al. and Andrisani et al. kinematic/aspect filter designs require a reasonable amount

of target class-specific information that can only be obtained by flight control analysis or
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empirical identification based on observing the respective target classes in flight. For this

effort, this level of information was neither available nor required.

Consistent with the approach in the previous chapters, we will restrict this filter to

operate under the assumption that the target flies in a straight (not necessarily level) path

or in a coordinated turn with constant acceleration relative to the target body frame. For

the short periods of time (several seconds) over which we intend to use this tracker, these

are considered to be valid assumptions - in any case, we will discuss actions to be taken

in the event that these assumptions appear to fail. The target's key turn-defining states

will be modelled as constants ("driven", or influenced to change during propagation, only

by small amounts of "continuous" white noise in the usual manner described in Sect. 2.3),

and assumed to be unknown at the start of the tracking sequence - the filter's first task

after initiation is to converge to reasonable estimates for these states. These key turn-

defining states are the roll angle and angle of attack for the turn, relating in the classical

nonlinear fashion to target velocity and position relative to the inertial frame (as discussed

in Sect. 5.5.3).

The "confusion" experienced by this filter when true and filter target models are

mismatched will be due primarily to significantly incorrect target rotation state estimates,

driven by aspect angle pseudo-measurements given to the filter. Recall that the term

pseudo applies because these quantities come from a pose estimator, rather than directly

from a sensor per se. As in the Kendrick and Andrisani efforts, the proposed filter will

place a great deal of reliance on these aspect angle pseudo-measurements in defining the

target acceleration state estimate. Ultimately, for the wrong target model choice, the

mismatch between (1) estimated acceleration (driven by the incorrect pose estimate) on

one hand, and (2) estimated velocity and position (driven by reasonably good doppler

velocity and position measurements) on the other hand, will cause significant residuals

and/or unreasonable values for some states - betraying this incorrect model choice in the

classical fashion discussed in Sect. 2.3.1.3.

We will now discuss how these mismatches can arise in practice, and how they affect

filter processes. Note Fig. 4.1 during this discussion. First of all, assume that we are

tracking an unrecognized aircraft target with radar and some (notional) imaging sensor
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Figure 4.1. Tracking / Recognition Scenario for Discussion

as it turns from a crossing trajectory toward the sensor platform, as if to launch a missile

at the platform. Simply tracking the target as a point object using the radar gives a

good estimate of target position and velocity states - the imaging sensor will provide a

pose estimate (and could improve cross-range position and velocity estimates if desired,

although this is not essential to the discussion).

Finally, assume that the true target is a MIG-21, but that one of our target recog-

nition alternatives requires us to try associating the target image with that of an F-4.

This choice of candidate targets is not accidental - in image feature observable domains

alone, even conditioned to some extent on kinematics (e.g., limiting aspect angle search

windows according to observed motion), these two aircraft classes can be confused eas-

ily [228:77]. We will see, however, that in the kinematic state domain, conditioned on

image information, they are readily distinguishable under common conditions.

Note that the F-4 is quite a bit longer than the MIG. Since range to the target is

reasonably well known, our notional recognizer will presumably make use of that length

difference (i.e., with reference to App. B.3, the recognizer is not, and should not be, scale-

invariant). In order to fit a model or statistical library representation of an F-4 to the
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image of an actual MIG, the pose estimator will in effect "pitch up" (or down) the F-4

model, decreasing its apparent length to match the image of the unclassified target (MIG).

The problem now is that the resulting pose estimate, delivered to the kinematic/aspect

tracker, will imply an extremely large angle of attack for the "F-4". This further implies a

much higher acceleration magnitude than the target is actually executing. Over time, this

unreasonable acceleration estimate will cause inconsistency within the filter, as position

and velocity estimates develop based on kinematic measurements.

Moreover, the wingspan of the F-4 is quite a bit larger than that of the MIG. To

resolve this difference, the pose estimator will presumably in effect "roll" the F-4 model,

decreasing its apparent width to match the image of the unclassified target. This error in

the pose estimate will imply that the plane of the wings lies at a considerably different

orientation than does the true orientation, which will lead to large errors in the estimated

direction of the target acceleration. This factor too will lead to inconsistency within the

fiter, as we shall see.

Generically, the pose estimate errors described thus far are "bias" errors. Other

sensors - high range resolution (HRR) radar and so on - should also be expected to

provide pose estimates exhibiting biases due to incorrect model choices. For example, the

Mahalanobis HRR metric used in Chapter V is extremely sensitive to length (in range)

of the HRR signature - as in the previous example, a pose estimator using this metric

can be expected to "turn" a long library model to find a best fit for the (short) signature

from a smaller actual target (note that the words "long" and "short" are italicized because

HRR signature "length" is a function of multi-bounce and other effects, as well as target

physical size, as discussed in Sect. 2.2.3).

Other forms of errors may be expected from any pose estimator, like erratic varia-

tions between measurements (more akin to "white" measurement noise errors), or time-

correlated errors (e.g., relatively slow wandering in aspect angle, which can be modelled as

the outputs of integrators driven by white Gaussian noise). These "classical" error types

are described in [153:183]. For radar-derived pose estimates in particular, we might expect

"whitc"-type errors due to scatterer motion that would affect pose estimates for correct or

incorrect model choices.
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Bias errors due to incorrect target model choices and white noise from various sources

are considered to be well-representative of typical errors expected in actual target recog-

nition scenarios. Moreover, from a theoretical perspective, bias and white errors tend to

"bound" the different forms of error in general. For these reasons, these classes of errors

will be the only ones considered in this demonstration.

4.2.2 The Filter State Model. The state dynamics model for the proposed ex-

tended Kalman filter is given in the equation:

PtliN Vt/iN

Pt/lB Vt/tB

Pt/iD 
Vt/iD• 

WV

WvlE

Vt/IN -kaerofijC;,: 1,3

tit/jB -kaeroffjC ' .J:2 ,3  
WID

t(-kaerof,, 
-3,3 ) + g

=- 0.0 + G (4.1)

ac 
0.0

&•,,Lo, W&
d~•~ T,. g•n

or 0.0 wPQ

Pgm - LPgm O,

Iýgm TO igm

kaevo 0.0

where:

Pt/i,.,D position of the target in inertial frame coordinates, i.e., with components

taken along the North, East, or Down axes of an earth-surface inertial or navigation frame.

Dot notation denotes time rate of change of the indicated variable, as observed from and

coordinatized in the indicated frame.

Vt/iNBD,, velocity of the target relative to the inertial frame in inertial frame coor-

dinates, i.e., as observed from and coordinatized in the navigation (inertial) frame.
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Figure 4.2. Distinction Between ab and a,

ctb the angle between the zero-lift longitudinal axis of the target and the target

body longitudinal reference axis used by the target recognition algorithm. This angle

is assumed to be constant for any given encounter, a function of the aircraft structure

and trim conditions, and all of the factors that affect trim conditions (fuel status, stores,

etc.). The degree to which this quantity is considered "known" or not by the filter can be

varied by adjusting the state's initial filter covariance. Unlike the following two variables

a, and ag., which enter into lift force equations, ab does not, thereby mitigating what

would otherwise be a serious observability problem, particularly between ab and a,. The

difference between ab and a, is shown in Fig. 4.2.

a, = the angle between the zero-lift longitudinal axis of the target and the angle

of attack required to achieve the desired (pilot-commanded) lift. This angle is treated

as a constant over the period of a few seconds required for this algorithm to function,

reflecting the fact that aircraft turns are generally held at a near-constant turn rate for

several seconds. As discussed below, this quantity is treated as unknown initially (i.e.,

this state has a high initial filter covariance), and can be "reset" to unknown (by again
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artificially increasing the state's filter covariance) when filter residuals indicate a change

in turn state for all models - this is an online adaptive estimation approach.

agm = the angular difference between the nominal angle of attack a, required to

achieve the desired maneuver (turn) and the actual angle of attack, modelling small per-

turbations about the nominal that tend to null to zero quickly. (It is modelled as the

output of a first-order Gauss-Markov process - hence the subscript "gin".)

Pc = the roll angle between the vertical "wings-level" attitude and the angle required

to attain the desired orientation of the plane of the wings, as shown in Fig. 5.24. Treated

as a constant for the same reason, and in the same way, as a,, noted above.

PgM = the angular difference between the roll angle required to achieve the desired

turn direction and the actual roll angle, modelling small perturbations about the nominal

that tend to null to zero quickly. (It is modelled as a the output of a first-order Gauss-

Markov process - hence the subscript "gm".)

39M = the angular difference between the nominal zero sideslip angle and the actual

sideslip angle, modelling small perturbations about the nominal that tend to null to zero

quickly. (It is modelled as a the output of a first-order Gauss-Markov process - hence the

subscript "gin".)

g = acceleration due to gravity

fif = aerodynamic load factor normal to the velocity vector, or, equivalently, accel-

eration due to lift force, as computed in Eqn. (5.1). It is important to note that the a or

angle of attack argument used to compute fi! is the sum of a, and ag,,,: ab, as noted in

the definition of this variable above, accounts for reference differences or trim conditions

only, and does not contribute to aerodynamic lift.

k,,,o = a multiplicative (scaling) factor for aerodynamic load factor (lift acceleration)

fil which will be estimated to account for uncertainties in the factors of Eqn. (5.1) -

including primarily aircraft mass, coefficient of lift, wing surface area, and, to a lesser

extent, velocity and other factors. It is treated as a constant in the same way as a,, noted

above.
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C! = the direction cosine matrix to convert P vector in "lift frame" coordinates to

one in inertial frame coordinates. The lift frame is found by rotating the velocity frame

(Fig. - 23) through the roll angle (Pc + Pg,,,) and defines the orientation of the normal

load acceleration with respect to inertial space. The procedures for defining this direction

cosine matrix (and others) are found in App. C. The two numbers associated with each

term of this variable in Eqn. (4.1) are respectively the row and column required for the

particular scalar element from C'! used at that point.

-, = correlation time for the first order Gauss-Markov process modelling the behavior

of ag,,,. This quantity would be estimated theoretically or empirically for each target class.

r, = correlation time for the first order Gauss-Markov process modelling the behavior

of pg,,,. Estimated theoretically or empirically for each target class.

ro = correlation time for the first order Gauss-Markov process modelling the behavior

of Og,m. Estimated theoretically or empirically for each target class.

= appropriate continuous time (heuristically) zero-

mean white Gaussian process driving noises, with appropriate strength Q(t) as defined in

Sect. 2.3.1 and discussed in Sect. 4.2.4 below.

and:

G [03x (4.2)
I10×•

These particular states were chosen because they reflect the coupling between trans-

lational and rotational dimensions for a conventional ai-craft more simply and directly than

many, if not all, other representations [120, 121, 51. A more conventional representation

for rotational states, such as a set of Euler angles relative to an inertial frame, cortains the

same information but requires more complicated transformations to relate angular state

to translational accelerations. A shortcoming in the represe-ltation here is tWe treatment

of angular perturbations as Gauss-Markov processes - additional aircraft-peculiar param-

eters as discussed in App. C would allow better modelling, but that level of .etail was not

required for this effort.
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4.2.3 The Filter Measurement Model. The measurement model for the proposed

extended Kalman filter is given in Eqns. (4.3) and (4.4) below. We assume that measure-

ments of sensor-to-target range, (pointing) angle, and range rate are generated in the usual

fashion by a radar tracker, and that range and angle are provided to the filter as target

position in sensor frame coordinates (assumed instantaneously inertial). We assume that

the pose estimator provides estimates of the three target body Euler angles relative to the

filter inertial (navigation) frame, which are then processed relative to the target velocity

vector estimate to yield pseudo-measurements of (1) angle of attack, (2) roll angle and (3)

sideslip angle for input to the fiter.

The sensor or predicted line of sight (pls) frame is a right-handed Cartesian reference

frame defined by (1) the predicted sensor-to-target (boresight) vector, (2) the perpendicular

(elevation) axis lying in a plane parallel to the local horizontal, and (3) the remaining

(azimuth) axis, pointing generally down. This relationship is illustrated in Fig. 4.1. The

orientation of the local horizontal (i.e., the direction of gravity) and magnitude of gravity

are assumed to be perfectly known. The implications of this assumption of perfect gravity

knowledge will be discussed at the end of this section.

The relationship between the (filter state or navigation frame) inertial and sensor

frames is given by the direction cosine matrix I. Procedures for defining C• are found

in App. C. Note that, although this matrix is itself a function of the filter states, it is

assumed to be constant at any measurement event (i.e., the sensor frame is impulsively

updated - an appropriate assumption for this frame, which will be artificially maintained

in software, even in actual implementation).

As discussed in Sect. 2.3.2.1 and (35], by comparison with other alternatives, this

sensor frame approach offers several advantages. First, it is inertial between impulsive

updates. Second, since range and angle error for our cases of interest are largely a function

of target extent independently along each axis in the true (but unknown a priori) line-of-

sight frame, and the predicted line-of-sight frame (pointing at the predicted target location)

is the best estimate of that true frame, it is reasonable to treat the expected measurement

error statistics in the predicted frame as independent along each axis (or diagonalized, in

matrix form). Both the inertial nature and independent error statistics of this frame bring
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computational savings in the tracker, with little effort or computational penalty required

for impulsive updates.

In computing true and filter-estimated target locations, it is important to separate

computations, in particular to prevent the filter from using truth knowledge, which an

actual system could not access. In this simulation, position measurements treat the true

target as a point, adding independently generated Gaussian noise samples to each axis in

the true line-of-sight frame (for the reason noted in the previous paragraph). The point in

space defined by this corrupted location in the true frame is transformed into the predicted

line-of-sight frame, as it would be "seen" by the sensor. For simulation purposes, the true

frame is generated in the same fashion as the sensor frame - their only difference is that

the true LOS frame points at the true target location (unknown to the filter), whereas

the sensor frame points at the best estimate for the target location. The reference frame

drawing in Fig. 4.1 applies generally to either the true or predicted line-of-sight frames.

The measurement error (ellipsoid) statistics are also maintained separately for use as

appropriate in the true or fite -modelled sensor frames. As for the position measurements,

the range-rate measurement is generated relative to the true line-of-sight frame, but is

assumed by the fiter to lie along the boresight axis in the predicted line-of-sight frame.

Finally, z(t,), the measurement at time ti, is modelled as the sum of h[x(t1 )] (nonlin-

ear form due to the consideration of ownship states not modelled in the fiter state vector

x) and a vector of discrete time zero mean white Gaussian noise v(t i ), with an appropriate

covariance R(t 1 ) (see Eqn. (2.15)), or:

z(t1 ) = h[x(t1 ), t] + v(t,) (4.3)

where:
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PtfaB Cipla(ti - p/

Pt/aA Ci":"a(pPt/, - Pa/i)

Pt/als CeIa(Ptl. - p)/

h(x(ti)] V/a. l:b(v _- v0 /,) (4.4)

am ab + a. + agm

Pm PC +Pgm

and:

PtlO,•A,, the position components of the tilrget relative to the sensor (Attacker)

along the Boresight, Azinuth, and Elevation axes in the sensor frame, respectively

vt/si, = the velocity component of the target relative to the sensor (attacker) along

the boresight axis in the sensor frame, as provided by a doppler radar

am = the aspect angle sensor-derived pseudo-measurement of angle of attack, found

by comparing the Euler angles of the target body frame relative to the filter inertial

frame with the filter-estimated target velocity vector under the coordinated turn flight

assumptions of Sect. 5.5.3

pm = the aspect angle sensor-derived pseudo-measurement of roll angle, found as for

am

3,m = the aspect angle sensor-derived pseudo-measurement of sideslip angle, found

as for am

Cpla:b,^ae = the first, second, and third rows (row vectors - hence use of lower case "c")

of the direction cosine matrix C?", which takes vectors from the filter inertial frame into

the sensor (predicted line-of-sight) frvme, consisting of boresight, azimuth, and elevation

axes, as noted above

pa/s = position of the sensor (attacker) in the filter inertial frame, i.e., with compo-

nents taken along the north, east, or down axes of an earth-surface inertial or navigation

frame. Sensor position is assumed to be "perfectly" known (i.e., errors in target position

are orders of magnitude greater than errors in ownship position)
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V.li = velocity of the sensor (attacker) relative to and coordinatized in the filter

inertial frame, i.e., with components taken along the north, east, or down axes of an earth-

surface inertial or navigation frame. As for sensor position, sensor velocity is assumed to

be "perfectly" known

and all other quantities are defined above.

The matrix of partial derivatives of h[x(ti)] with respect to the states, H, is therefore

given by:

[ 3.laj×3  [013.1o

H= C•-, 1  C'' CP01 (4.5)
•Ii:1,1 •"•i:1,2 i:1,3

11 1 0 0 0 0

[013x6 0 0 0 1 1 0 0

0 0 0 0 01 0
7x 13

where the numerical subscripts on CP" imply use of the entire matrix (3 x 3) or a scalar

element from the corresponding row and column (e.g., 1, 2).

Small errors in the knowledge of gravity (much greater than those typical for modern

navigation systems) should not in general invalidate this approach. Consider a five degree

error in the direction of gravity (equivalent to a vertical bias of less than 0.004 g, and a

horizontal bias of less than 0.09 g) or comparable errors in knowledge of gravity magnitude.

With reference to the scenario given in Sect. 4.2.1, we would expect this error magnitude

to have negligible effects on scenarios that involve pose estimates implying significant dif-

ferences in acceleration magnitude (angle of attack), since small angle of attack differences

for tactical aircraft quickly lead to acceleration differences much larger than one g.

Where pose estimates lead to differences in acceleration orientation only, the effect of

gravity error could be more significant. For example, where the error in gravity direction is

comparable to the difference in lift orientation between correct and incorrect pose estimates,
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and the incorrect pose estimate (target) appears to be more properly oriented with respect

to the (incorrect) direction of gravity than the correct pose estimate (target), this situation

could lead to incorrect identifications - the incorrect target would "fly" with lower residual

errors than the correct one. In any case, with an imaging sensor and knowledge of range

as in the scenario of Sect. 4.2.1, differences in physical dimensions for typical targets of

interest should lead to pose estimate differences in general much larger than typical errors

in the knowledge of the direction of gravity.

4.2.4 Filter Tuning. No great deal of filter tuning was required or performed

to demonstrate the behavior of interest in the proposed application. Dynamics driving

(pseudo) noise (Q), Gauss-Markov state correlation times (,r), and measurement noise

parameters (R) are shown in Table 4.1.

Most initial variances are left large (relative to the square of typical values) for

states assumed "constant but unknown" to faciliate the filter converging to reasonably

good values. Note that the variance for ab (the "trim" component of a) is not large,

implying that it is reasonably well known. This is significant, as we shall see later.

Correlation times for Gauss-Markov processes were set based on reasonable expec-

tations for the time required for flight control systems to null fluctuations in these states.

Dynamics driving noise strength values for these Gauss-Markov angular states were then

set using the procedures discussed in Sect. 2.3.2.1 and [153:178] (as for the Gauss-Markov

acceleration states in the Singer target model), with reasonable assumptions for expected

angular standard deviations. Dynamics driving noise values for the assumed-constant an-

gular states are set to arbitrary small values.

Measurement corruptions in this scenario are assumed to be white. The measurement

sampling interval is taken as 0.1 seconds, consistent with dedicated tracking, as opposed

to track-while-scan operation. The following paragraphs consider position, velocity, and

aspect angle measurements in turn.

Position measurements treat the target as a point, adding independently generated

Gaussian noise samples of standard deviation 100 feet to each axis in the true line-of-

sight frame. The filter measurement model assumes Gaussian noise of 100 foot standard
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Filter Tuning Parameter Truth Model Filter Model

PP,!,•, N/A 100 2feet 2

Pp_ _ __,° ._ N/A 1002feetz

Pp,/,, N/A 1002feetz

P,,1/,,o N/A 1002(feet/ sec)2

Plu,/,wo N/A 100 2(feet/ sec) 2

Pviwo N/A 100 2(feet/ sec) 2

P~b,O N/A 0.001radians4

Poo N/A 0.10radians2
P."-,o N/A 0.001radians'
Pp.,o N/A 1.0radians2

Ppg-,o N/A 0.001radians2

P0_9,_ N/A 0.001radians'

Pk.....o N/A 1.0 (non-dimensional)

Q-b N/A 1.0 deg 2 sec

Qa. N/A 1.0 deg2 sec
SN/A 1.0 deg' sec

-rg. N/A 1.0 sec
Qpo N/A 1.0 deg2 sec

SQp. N/A 1.0 ýdeg• sec

Tpg- N/A 1.0 sec
Q~eg- N/A 1.0 deg2 sec

,rp9- N/A 0.5 sec

Qk.... N/A 1.0 sec

Rpl.n 100 2 feet2 100 2feet2

Rp., 1002 feet 100 2feet'

.14p,10 100 2feet2  100 2feet 2

1,./4. 602 or 100 2(feet/ sec) 2  602 or 100 2 (feet/ sec)2

R., 9 degz 4 deg'
Rp_ 9 degz 4 deg2

._R_ 9 deg7 4 degz

Table 4.1. Filter Tuning Parameters
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deviation relative to the predicted line-of-sight frame, as defined above. For spherical error

ellipsoids as employed here, the difference between orientations of the true and predicted

line-of-sight frames is not important.

At 100,000 feet range, this position accuracy equates to an angular accuracy standard

deviation of one milliradian, which is considered to be state of the art for an aircraft radar

system in a dedicated tracking mode, but very conservative with respect to the performance

of state-of-the-art military land- or ship-based systems [15, 16, 11]. Likewise, assumption

of 100 foot standard deviation for range measurements is considered conservative. It is

important to note that position bias errors (i.e., errors constant for periods of several

seconds or more) will have little effect on the proposed algorithms. "White" and otherwise

rapidly changing errors, however, are observed by the filter as target accelerations, and for

aircraft targets at least, imply large variations in aspect angle.

Doppler velocity measurements are similarly defined from the target-sensor relative

velocity along the true boresight, but are treated by the fiter as though along the predicted

boresight. Both true and filter doppler velocity standard deviations are 60 feet per second

in Test Scenarios 1A and 1B (defined in the next section). This accuracy is conservative

with respect to published results [48]. True and fiter doppler velocity standard deviations

were increased to 100 feet per second (i.e., approximately twice the accuracy of results

in [481) to reduce considerably, but not eliminate, the impact of doppler information for

Scenario 2 - this is the only tuning difference between the three scenarios.

Aspect angle measurements are corrupted in all cases with white noise of standard

deviation three degrees, while the filter assumes two degrees. This was an arbitrary choice,

rather smaller than the five degree standard deviations used as nominals by [120], but

reflecting an ultimate intent to obtain (through new methods discussed in the previous

chapter, and demonstrated in the following chapter) smoother pose estimates than have

been available in the past. The increase in true over filter-modelled noise is simply intended

to stress the filter somewhat. Bias error values are discussed in the following section, since

they were scenario-specific.
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4.3 Results and Discussion

The proposed filter was implemented using the "Multimode Simulation for Optimal

Filter Evaluation" (MSOFE) software [46], as developed by Mr. Stan Musick of Wright

Laboratory (WL/AAAS) et al. The evaluation was conducted primarily by feeding the

filter with artificially biased and white noise-corrupted aspect angle estimates. These cor-

ruptions are assumed to have arisen, for example, in the manner as described in Sect. 4.2.1 -

this demonstration does not provide for an explicit simulation of the pose estimation pro-

cess. All results are for 20-run Monte Carlo sets with statistics as given in the previous

section.

These results will show decisively that operating a kinematic/aspect-angle filter with

inappropriate model assumptions can lead quickly to large residuals or deviations from

expected state values. The comparison of these residuals and states of interest with allow-

able covariance values using Bayes' Rule and multiple model algorithms as described in

Sect. 2.3.1.3 and [154:129-1361 is a powerful approach for indicating the correct parame-

ter set, or target class, that generated the observed combination of kinematic and feature

observable behavior. It will be clear, moreover, that in many cases, a simple thresholding

algorithm will quickly eliminate some target classes from consideration. Another point to

note is that certain scalar residual elements and states may be more indicative of incor-

rect target class associations than others - observing behavior in these values individually

may be more practical than observing, say, the ensemble log likelihood of all residuals and

states of interest, where differences can become " blurred" in the fluctuations common to

all models.

Most of the the plots showing the natural log of the residual/state likelihood for the

various scenarios are computed according to Eqn. (4.6). Note that this likelihood is not a

moving window sum or a sum over an ever-increasing time period, rather the individual

log likelihood value at the particular time. The intent here is to show that, in the mean,

significant residual differences can be developed at any one time. Two sets of plots will

show how likelihood separation increases with the use of a moving window sum, over one

second (ten measurement events, in those cases).
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Also, note that Eqn. (4.6) treats the residual vector elements as independent from

each other at any given event, which is not strictly conventional - generally, the log like-

lihood is calculated using the weighted inner product of the residual vector with itself at

time ti- (prior to any updates), where the weighting matrix is the inverse of the (clas-

sical) residual covariance matrix A(ti) = [H(ti)P(tT)H T (ti) + R(ti)] (see Sect. 2.3.1.3).

However, MSOFE performs sequential scalar measurement updates, and the residual val-

ues and corresponding variances are made available sequentially as scalars. Although not

formally proven for this effort, it is evident (as implied by Kailath [118]) that residual

covariance-weighted distance in the "innovations space" is an information measure, and,

under linear filtering assumptions, we should not expect it to change with method or order

of processing. For the case of two-dimensional measurements, equivalence is easily shown

between the quadratically-weighted squared distance obtained from vector residuals as

noted above, and the squared distance obtained from sequential scalar updates using the

following equation. Thus, the likelihood of interest is taken as:

LIt 05 E - + (4.6)
1 [~l T.2(t Pk- (t~t)]

where:

L 1 (ti) = the (natural) log likelihood of the observed residuals and state for one (hence

subscript "1") measurement event at time ti, less the bias factor associated with the log

likelihood of a Gaussian probability density.

rl(tj) =the residual (squared) for the m-th measurement at time ti.

o,,(t,) the fiter-computed variance for the residual of the m-th measurement at

time ti.

P....(t+) = the filter-computed estimate of the variance in the aerodynamic scale

factor kaeo (the 13th state) following measurement update at time ti.

and other variables are as defined above.

We note in passing that for nonlinear filtering, order of computation can be very

important - in general, we often choose to process the most accurate information first,
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in particular to provide the most accurate start for successive relinearizations. In the

sequence of scalar updates for this effort, we process position measurements before the

doppler measurement - to provide a best estimate of target direction along which to align

and process the doppler velocity information.

4.3.1 Scenarios IA and lB. The following discussion refers to a situation very

similar to that shown in Fig. 4.1 - a target is turning toward us (the sensor) in a horizontal

plane so that the plane of the target wings is generally normal to the sensor-to-target vector.

This is a scenario of great interest in air-to-air combat, due to the possibility that a hostile

target will release a missile at the completion of the turn. We wish to determine the class

of the unknown target engaged in this maneuver.

Each of the points of this discussion revolves around a pair of figures - the first figure

showing what a properly-matched target model would yield, and the second figure showing

what a particular mismatched target model would yield. The effect of the mismatched

model in his case is to induce: (1) a 20 degree positive bias in the roll angle pseudo-

measurement (i.e., the target is apparently rolled 20 degrees further to the right than the

actual roll angle required for the given maneuver) and (2) a 20 degree positive bias in the

angle of attack pseudo-measurement. The reader should note the cxtent to which, in each

case, the mean measurement residual or state estimate remains within the bounds of the

residual or state filter-computed standard deviation, o! - the symmetrically paired curves

represent .ero (the f!ter-anticipated residual mean) +/- one a,.

Figs. 4.3 through 4.10 refer to Scenario 1A, in which the target turn rate equates

to 1 g in the horizontal plane (so that the nominal roll angle is 45 degrees to the local

horizontal). For Figs. 4.11 through 4.14, or Scenario 1B, we increase the horizontal turn

acceleration to 4 g's, so that the nominal orientation of the plane of the wings is nearly

perpendicular to the local horizontal.

Figs. 4.3 and 4.4 show the behavior of the vertical position measurement (15t/)

residuals with correct and incorrect model assumptions. The second (incorrect model)

figure exhibits classical residual "failure", which may be interpreted as the filter directing

its acceleration estimate in the wrong direction, and being unable to supply the lift required

4-18



to maintain the filte-" 'odel ,iear the altitude of the true target - hence, these altitudes

diverge, and th- ,avergence appears immediately in the residual. This behavior will be

observed with or without the angle of attack bias. Note that the plots look essentially

the same over the first two seconds because some time is required for the underlying

acceleration contradiction to develop an obvious position contradiction (moreover, the same

noise realizations were used for both plots).

Figs. 4.5 and 4.6 show the behavior of the state estimate for k.,,o. As noted above,

this state is expected to have a value of one. Errors are reasonably small for the unbi-

ased angular pseudo measurements - the "wandering" effect over time is due to limited

observability between this and other states (principally the Pngle of attack states). For

biased angle of attack measurements, however, k.,,. reflects immediate deviation from its

nominal value. This result may be interpreted as the filter telling the user that it is willing

to accept the observed position, velocity, and aspect angle values, but that the target must

have many times the nominal expected mass, in order to be consistent with the observed

position and velocity measurements over time. This behavior will be observed with or

without the roll angle bias.

Note that the behavior of the kaero estimate for the wrong model is due to the fact

that the initial variance for state ab, the "trim" angle of attack value, is kept small and the

initial ab value is zero. Increasing the initial variance for this state will allow it to assume

significantly nor '-ero values, reducing the tendency for the filter to modify k,,To according

to observed measurements. In that event, ab should be added to Eqn. (4.6) as a state of

interest - looking for deviations from a nominal trim angle of attack. Alternatively, "lock-

ing" k.,,o to a value near one and ab to values near zero will cause immediate deviations in

the range rate residual, if the boresight vector is aligned along axes of motion affected by

these assumptions. The key point is that, one way or another, where kinematics and aspect

angle are as highly coupled as they are for most aircraft, incorrect modelling assumptions

will betray themselves in a kinematic/aspect-angle filter.

Next, Figs. 4.7 and 4.8 contrast the behavior of the log residual/state likelihood at

each measurement event (not a sum over several events) for the two target model choices.

The somewhat lower likelihoods around the one second point in time are due to the angle
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of attack error, and the recovery occurs because of the changed or "learned" value in k.,,o.

The unreasonable resulting value of k.,,o, however, is the major factor in the remaining

difference between residual/state log likelihood for the correct and incorrect target models.

The reader should expect that using partial or growing sums of log likelihoods over

time will increase the distinction between likelihoods for the two cases. The effect of

summing the likelihoods over a moving window of one second (ten measurements) is illus-

trated in Figs. 4.9 and 4.10. Note the improved separation between correct and incorrect

models for this pair of figures, by comparison with Figs. 4.7 and 4.8. Treating these likeli-

hoods in a two-class Bayesian parameter estimation case (Eqn. (3.2)) with equal a priori

probability p(wj), we quickly observe that since the mean likelihood for the wrong case

(z 10-1°exp(-45)) is many orders of magnitude smaller than that for the correct case

(; 10-l exp(-30)), the a posteriori probability for the "correct" (unknown a priori) tar-

get, in the mean, is effectively one (note that the leading coefficients for the two Gaussian

likelihoods are both on the order of 1.0 x 10-10).

Now we consider Scenario lB. Figs. 4.11 and 4.12 show that higher turn rates speed

the development of residual error in the vertical sensor position channel. Figs. 4.13 and 4.14

show that the kaeo starce behavior is consistent with the earlier case (as are the residual

log likelihoods, not shown here). Note that koero state error appears somewhat smaller in

Scenario 1B than Scenario 1A because of, and not in spite of, the higher true acceleration

level in this case. The proportional difference in mass implied by an increase (error) of 20

degrees in angle of attack when the required angle of attack is large (for the high-g turn)

is less than the proportional difference in mass implied by an angle of attack error of 20

degrees when the required angle of attack (turn rate) is smaller.

It is important to note that the tuning parameters in these scenarios represent what

are for many applications very worst case choices, both for the filter and truth model. For

example, in an air-to-air scenario with a radar and an imaging sensor, even with many

miles of range to target, the random component of position measurement error normal

to the line-of-sight could be considerably better than the 100 foot one sigma errors used

here, if the imaging sensor aids in the pointing and tracking process. This will reduce the

random noise in these results considerably, while preserving the trends shown here. Also
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recall that these results are for a case in which the aspect angle pseudo-measurements are

rather noisier than assumed by the filter - this means that the filter tends not to suppress

the noise as well as it could if it were "told" that the noise level is higher. Thus, tuning

could improve these results somewhat, but the intent here is to show that precise tuning

is not required to demonstrate major differences between classes in likely scenarios.

4.3.2 Scenario 2. This scenario is very simple - the target is 20 miles out,

10,000 feet higher than the sensor, and flying at 800 feet per second straight and level on

a bearing directly toward the sensor. This scenario is unique among the ones addressed in

this research in that the aircraft isn't turning - in this case, the combination of conditions

required merely for level flight will quickly indicate an incorrect target class. Recall from

Sect. 4.2.4 that the doppler velocity information quality is degraded here over that in the

previous case, in particular to show that high quality doppler isn't required - the activity

of interest here (conflict in the vertical acceleration estimate) occurs normal to the line-of-

sight.

As before, we have two candidate target classes - the correct one, and an incorrect

one. Again, the pose estimator gives an aspect angle measurement which equates to a

20 degree positive bias error in angle of attack. This could occur for this trajectory, for

example, if a high range resolution radar algorithm were "allowed" to find the best pose

match from a short true target to a long library model - generally looking beyond the 10

or 20-degree square extent of aspect angle window to which searches would normally be

restricted (bearing in mind, as noted in Sect. 3.8.4, that small aspect angle search windows

based on real time tracking for aircraft targets are highly unrealistic in any case). Figs. 4.15

and 4.16 show that the incorrect model association betrays itself quickly in the k.,,o state

as before. In general, it has been noted that any angle of attack bias with an absolute

value of ten or more degrees causes comparable results for aircraft of the F-4 / MIG-21

performance range.

Figs. 4.17 and 4.18 (likelihoods at each measurement) and Figs. 4.19 and 4.20 (sum-

ming likelihoods over a moving window of one second or ten measurements) show that

residual differences are somewhat more pronounced between correct and incorrect models
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than in the previous scenarios. This is due both to the poorer doppler quality and differ-

ent trajectory here, compared with that in the previous scenarios. Restoring the better

doppler quality will improve these residuals somewhat, but artificially providing the filter

with "vertical" velocity measurements (i.e., target velocity measurements along the axis of

the vertical motion which would tend to be induced by a large angle of attack in this case)

is observed to restore the residual error to slightly smaller than that observed in Fig. 4.8 -

as expected, since Scenario 2 does not have a roll angle measurement bias. The point here

is that high quality measurements in a particular state space dimension can retard the

development of high error residuals in that dimension, even when the model parameters

governing state behavior in that dimension are in error.

In other words, high quality measurements can force the state dynamics model to

follow observed behavior, despite the model's inclinations to the contrary. In that case,

residual behavior per se may not be the best indicator of an inproper parameter set choice -

hence our interest to consider indicators such as the behavior of states like k.,a.o.

Summarizing, the key point in this scenario is that the translational/rotational cou-

pling for conventional airplanes is so severe that relatively small pose estimate differences

can reveal incorrect target class choices dramatically even in straight, level flight. The

conventional approach to target recognition by comparing distances in feature observable

spaces for various target class choices, without considering dynamic implications, is not

nearly as likely to yield an output that so forcefully indicates incorrect choices. This is

simply further confirmation of the imperative to consider the joint likelihood of all observ-

able events in making object recognition decisions.

4.4 Summary

The results of this chapter provide clear confirmation of claims made in Chapter III:

that kinematic/aspect filters driven by correct and incorrect pose estimates under nonre-

strictive conditions can exhibit distinctly different residual and state likelihoods. These

likelihoods can be used in a Bayesian multiple model residual analysis parameter estima-

tor for target recognition - without explicitly comparing observed and predicted feature

observable measurements for correct and incorrect classes.
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This application is only one in a class of techniques that can be used for dynamic ob-

ject recognition whenever (1) two or more disjoint subsets of estimator state variables are

highly coupled by parameters that differ between object classes, (2) when measurements or

pseudo-measurements are available that are functions of state variables from the disjoint

subsets, and (3) the objects are observed under conditions that exploit state variable cou-

pling. These techniques will consider the joint likelihood of measured and pseudo-measured

events, conditioned on (1) state coupling rules associated with each candidate parameter

set, and (2) prior measurements and pseudo-measurements - including, implicitly, the

feature observable measurements from which pseudo-measurements were derived.

These results confirm a significant theoretical and practical contribution to the field

of dynamic object recognition, extending the proposals of Therrien [211] to cases in which

predictor/corrector methods are not suitable for all measurement quantities, but in which

low ambiguity mappings exist between such ill-defined measurement quantities and one or

more uniquely coupled estimator states. The results also demonstrate in particular a new

and powerful approach for aircraft recognition.

In the following chapter, we demonstrate methods for explicitly comparing feature

observable measurements to feature observable libraries for known classes, under conditions

where predictor/corrector methods may be infeasible. In particular, we will be concerned

with combinations of rapid, unpredictable state space transitions and nonlinear measure-

ment functions that combine to create "high frequency" measurement variations - a set of

conditions that applies in general for high range resolution (HRR) radar target recognition.
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V. Dynamic Programming Sequence Comparison for Target Recognition

5.1 Introduction

"'his chapter will expand upon the discussion in Chapters I and III to demonstrate

the proposed concepts of dynamic programming-based sequence comparison - "motion

warping" - for sensor fusion and object recognition. This is the second of three steps for

considering the joint likelihood of feature observations and kinematic measurements, as

discussed in Sect. 3.1. The objective here is to define and investigate a class of algorithms

that combines feature observable information while obeying feasible or observed kinematic

constraints for the objects of interest. We will find that restricting feature observable

associations to kinematically likely sets achieves the result predicted in Sect. 2.6.2 - that

is, reducing the output likelihood value for incorrect associations, without substantially

affecting the output i'kelHhood values for correct associations.

As in the previous chapters, the primary interest here is recognition of aircraft targets,

and the terminology will reflect that interest. Again, however, these basic approaches are

suitable for application to many different recognition tasks.

5.2 Concept Overview

The process of motion warping as demonstrated in this chapter is briefly summarized

in the following steps, to provide a basis for understanding the more technical discussion

in the sections that follow.

5.2.1 Tracking the Target. This process can use in general any of the recognized

mathematical models for target tracking. The research described in this chapter useb the

standard extended Kalman filter / Singer model kinematic tracking approach as described

in Sect. 2.3.2.1, followed by optimal fixed lag smoothing and polynomial curve fitting to

develop trajectory information suitable for estimating acceleration of an aircraft target in

a turn. Smoothing and polynomial curve fitting are covered in detail in App. C.6.

5.2.2 Defining Likely Aspect Angle Regions and Paths. Given an estimate for

the target position, velocity, and acceleration over some time period of interest, for most
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target classes of interest we can develop estimates for the most likely, or nominal aspect

angle path traced by the target-sensor vector on the hypothetical aspect angle sphere, as

discussed in Sect. 2.3.3.1. Knowledge of statistics for the error in target and ownship state

will allow us to define aspect angle error bounds around the nominal aspect angle path.

5.2.3 Matching Feature Observations to Aspect Angles. At this point, we have

defined aspect angle regions on target models of interest and nominal paths through those

regions, i.e., paths kinematically likely to have been traced as measured feature observable

sequences were generated. Target sensor signature modeling tools are used to provide sig-

nature libraries corresponding to reqi'ired models and aspect angles. From one of these

models, we can select a feature observable sequence which will be corrupted with noise to

produce the "true" sequence. Now we use any of several dynamic programming sequence

comparison techniques (as discussed in Sect. 2.4) or other methods to match feature ob-

servables with likely aspect angle states for each feasible target model.

5.2.4 Evaluating Performance. We will see that the performance results of

dynamic programming sequence comparison can be expressed in terms of generalized am-

biguity functions, as well as in more conventional terms such as probability of correct or

incorrect recognition.

5.3 Generation of Simulated Target Signatures

5.3.1 Introduction. As the author began to develop dynamic programming (DP)-

based sequence comparison for moving object recognition, Mr. Michael Bryant and Mr.

Rick Mitchell of the Target Recognition Technology Branch (WL/AARA) at the USAF's

Wright Laboratory (USAF sponsor for this effort) requested that the technique be applied

to aircraft recognition using high-range resolution (HRR) radar. This choice of sensor

signature domain was influenced primarily by the availability of computer models for sig-

nature generation. The fact that dynamic time warping (DTW) for speech is notably

robust with regard to choices of feature space and metric was also reassuring.
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Thus, HRR radar target signature libraries were a fundamental requirement for pur-

suing this research. Achieving high fidelity with respect to real-world signatures from

actual targets of interest, however, was not a requirement. Recall that the intent here

is not to establish performance absolutes, but simply to demonstrate reduced ambiguity

in object recognition using sequence comparison techniques, for some choice of signature

and metric, relative to more conventional approaches. That being said, the effort would

clearly be more interesting if some connection is made between the research targets and

real targets, and research metrics and real metrics. The chosen approach to radar signature

generation reflects this compromise.

Some measured signature data was available [166, 201, but the author made only

limited use of this data for several reasons. First, most measured data is derived from

classified research, and, even where the data itself is unclassified, much information of

interest about the data remains classified (particularly associations between the data and

the actual target classes). This dissertation is required to be unclassified.

Second, the available measured data is limited with respect to aspect angles and

polarizations (polarization, as discussed in Sect. 2.2.3, refers to the orientation of the

incident radar waveform in roll angle around the sensor-to-target vector, with respect to

the target). Most available aircraft signature data tends to be taken from aspect angles

near the plane of the target's wings. For our purposes, this region tends to be of little

interest, since a turning aircraft target at any altitude reasonably near that of the sensor

quickly exhibits aspect angles that are far from the plat,, of the wings. Use of measured

data, then, would have severely limited the possiW. et trajectories.

Third, measured data is available for on, ' ' distinct target classes. For our

purposes, we will desire to define pseudo-targets, in some sense between real target classes

of interest. By definition, measured data will not provide signatures for these targets.

Other problems with measured data from recent tests aside from those mentioned here are

discussed at length in [201 (classified secret).

For these reasons, the author and the research sponsors (WL/AARA) determined

that synthetic signature generation was the proper approach for this research. The ini-
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tial choice was the Syracuse Research Corporation radar signature simulation "SRCRCS"

developed under contract to the USAF's Phillips Lab at Rome, N.Y. [53]. This tool was

familiar both to AFIT and WL/AARA, and was hosted on computer systems at both

locations.

SRCRCS has two significant shortcomings that limited its utility, however. First,

it is written to run on a VMS operating system, and without further effort would not

be compatible on UNIX-based Sun SPARC workstations, where the bulk of this research

was to be accomplished. Second, it is deterministic - that is, the particular target model,

center frequency, bandwidth, aspect angle, and polarization value completely define the

signature. As we have seen, for real targets, even when these factors are constant, the

signature will vary randomly over time, due to body vibrations and other factors.

The first of these problems was overcome by using the MIT/Lincoln Laboratory

RCSTooLLBox radar signature simulation tool [371. Other tools, some of which have much

higher fidelity than RCSTooLLBox, were judged to be less mature, more complex, or more

computationally demanding than the objectives and timelines for this research required.

The second problem was overcome by adding noise of realistic statistics to deterministic

signatures. The following sections describe these actions in detail.

5.3.2 Signature Simulators: RCSTooLLBox and Others. RCSTooLLBox [37]

is a derivative of SRCRCS, developed by Dr. E.C. Burt (formerly of Syracuse Research

Corporation) and others at MIT Lincoln Laboratory. RCSTooLLBox is designed to run

on UNIX operating systems - primarily Silicon Graphics systems, which offer excellent

graphic visualization capabilities. Dr. Burt provided the author with a version optimized

to operate on Sun SPARC workstations, albeit without full graphics capability.

Other than operating system, from this user's perspective the only significant dif-

ference between SRCRCS and RCSTooLLBox is that RCSTooLLBox models only perfect

conductors, rather than the full range of conductivities modeled by SRCRCS. In both

cases, targets are modelled as three-dimensional combinations of polyellipsoids (heuristi-

cally, "warped cylinders"), triangular plates, and point scatterers that physically resemble

desired targets to any desired degree. The radar scattering process is modelled using ge-
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ometric optics and physical diffraction assumptions. A particularly useful fact about the

relationship beteween SRCRCS and RCSTooLLBox is that the detailed but user-friendly

operators' manuals for SRCRCS [531 apply in many cases verbatim to RCSTooLLBox.

Multiple bounces by incident radiation are not modelled by SRCRCS and RCSTooLL-

Box. Therefore, their output signatures do not exhibit in particular the cavity or corner

reflector effects that are typical of real signatures from aircraft and other tactical targets.

The scattering assumptions produce highly specular, or mirror-like signatures - that is,

over most aspect angles, we receive generally less return radiation than a real target would

return, but a few aspect angles return substantially more. SRCRCS and RCSTooLLBox-

derived HRR radar signatures do exhibit the relative motion and aspect angle variation

of returns from major scatterers that are characteristic of actual HRR radar returns, but

their principal attraction is computational economy rather than precision.

The current primary modelling alternative to SRCRCS and RCSTooLLBox in use at

the Wright Laboratory Target Recognition Technology Branch (WL/AARA) is a ray cast-

ing model called XPATCH, which uses geometric optics assumptions, allows for multiple

bounces, and employs highly detailed target models to provide target signature estimates

that correspond to observed results much more closely than SRCRCS and RCSTooLLBox.

WL/AARA expects XPATCH to play a key role in generation of signature libraries for

on-line target recognition with HRR radar. On a SPARC terminal, however, generat-

ing one XPATCH signature (i.e., for a given target model, aspect angle, and polarization

value) may require several hours, whereas an RCSTooLLBox signature for models of the

complexity level used in this research (shown below) takes about 30 seconds. Since a

typical analysis run requires about 2000 signatures for each of several models, generation

of XPATCH signatures for this research was considered to be out of the question. Had

adequate XPATCH signature libraries been available at the start of this research, how-

ever, they would have been used, and extensions to this research should certainly employ

XPATCH or comparable signature data if available.

As of this writing, additional signature simulation tools have become available locally

that show great promise for future effort in multisensor fusion. Chief among these is the

"BRL-CAD" Package [65], or Ballistics Research Laboratory Computer Automated Design
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Package, available from the U.S. Army Ballistics Research Laboratory (BRL) at Aberdeen

Proving Ground, Maryland. This package includes exceptionally detailed target modeling

capability, and has been augmented by a set of radar signature calculation codes. These

include the Simulated Radar IMagery, or SHIM code by the Environmental Research

Institute of Michigan (ERIM), the SARSIM codes by Northrop, and the TRACK code

by Georgia Tech Research Institute (GTRI). The first code is a ray casting signature

generator apparently similar to that in XPATCH, while the latter two codes are apparently

more comparable to RCSTooLLBox. The reader is referred to Vol. I of [65], or equivalently

to [64] for a good discussion of these models and the radar modelling tradeoffs in BRLCAD,

which illuminate equally well the comparison of SRCRCS/RCSTooLLBox and XPATCH

above.

Most notably in contrast to RCSTooLLBox and XPATCH, however, BRLCAD mod-

els the target image in visual and infrared spectra - "multispectral" capability is essential

in multisensor fusion research. BRL-CAD was not on-line at AFIT at the start of this

research, but is at present.

5.3.3 RCSTooLLBoz Models and Signatures. SRCRCS and RCSTooLLBox tar-

get models are defined in an ascii text file format called a "SCAMP' file. A SCAMP file

defines the collections of polyellipsoids, triangular plates, and point scatterers that define

a target in three-space, and provides supplemental information regarding the scattering

properties of these objects. Modelling procedures for SRCRCS and RCSTooLLBox are

described in detail in [53]. One particular point that requires emphasis is that care must

be taken to ensure that SCAMP model surfaces do not intersect, since intersections tend to

confuse the shadowing calculation algorithm. Fig. 5.1 shows the SRCRCS/RCSTooLLBox

target body coordinate frame convention, which differs from the airframe convention used

in the flight control community (to be shown in Fig. 5.23).

SRCRCS and the full-graphics versions of RCSTooLLBox can render SCAMP file

contents as a visual image from any aspect - if desired, causing surfaces not visible to

the radar to be graphically invisible also. Figs. 5.2 through 5.7 show typical SCAMP

models used early in this research, as rendered on SRCRCS (recall that the version of
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Figure 5.1. The SRCRCS/RCSTooLLBox Radar Target Coordinate Frame
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RCSTooLLBox used in this research does not provide graphic displays). Note that the

asterisks in these figures represent point scatterers, and that some surfaces have been

declared as "one-sided" scatterers, and are not visible in this representation.

Figs. 5.2 through 5.7 were attempts to make "faithful" representations of typical

targets of interest. Analysis of target recognition performance algorithms using these

models, however, will show that for the trajectories, signature metric, and noise levels

employed, all algorithms selected the correct target 100% of the time (although sequence

comparison methods did so with a higher confidence level, or lower ambiguity, as observed

using the generalized ambiguity function). To create more ambiguous targets, then, the

author was ultimately driven to augment the target models with additional point scatterers.

Fig. 5.8 shows such a MIG-21 so augmented. Also, where overall target size appeared to

be a key discriminant, the author scaled targets relative to one other to reduce significant

size differences. Only with such targets, particular trajectories, and high noise levels was

it possible to generate cases in which conventional techniques would fail (as defined in

Sect. 3.11.2), but the proposed techniques would correctly identify targets.

As discussed in Chapter III, for the purpose of this research it was necessary to define

not only target models of interest, but also target models (parameter sets) in some sense

"in between" two parent target models. These "interpolated models" will define specific

likelihood functions for target parameters in between the "endpoint" or origin targets

of interest, and will allow us to construct the generalized ambiguity function curves for

each basic form of likelihood function (see Sect. 3.11). The SCAMP file format allows a

straightforward approach to "interpolated" targets. Each parent was defined by the same

number and type of shapes and surfaces, but the locations occupied by these objects in

3-dimensional space differed according to the size and shape of the respective target. For

example, the two targets in Figs. 5.2 and 5.3 are defined by the same number and type of

shapes and surfaces, with only locations changed. Similarly, the three targets in Figs. 5.4

through 5.6 are commonly defined in this way. Borrowing from the evolving language of

computer graphics [22], then, 3-D linear interpolation "morphs" (morphological, or shape,

transformations) were performed to obtain new "points" in target parameter space, or new

targets in some sense "between" the two parents.
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Figure 5.2. Boeing B-737

Figure 5.3. Yakovlev YAK-28
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Figure 5.4. Mikoyan MIG-21

Figure 5.5. Sukhoi SU-22
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Figure 5.6. McDonnell-Douglas F-4

Figure 5.7. McDonnell-Douglas F-4 with stores (bombs)
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Figure 5.8. Mikoyan MIG-21 with Extra Point Scatterers

The morphing process is performed by a modified version of an original RCSTooLL-

Box subroutine that reads two SCAMP parent files line-by-line and writes output SCAMP

fies for desired interpolation (or extrapolation) values. The output SCAMP morphs are

then post-processed somewhat in the usual SCAMP fie editing process to re-smooth polyel-

lipsoid surfaces and eliminate intersections of surfaces. Fig. 5.9 shows an F-4 Phantom II

and a MIG-21 as parent targets, and a pseudo-target defined by 50% interpolation between

the parents. Note the difference in size between the three models - often a key discriminant,

where the target-sensor relative position can exploit it. It must be emphasized that this

linear interpolation was never expected to translate into linear changes of the likelihood

function outputs, and it did not.

5.3.4 Test Data Analysis for Noise Statistics. Like SRCRCS, RCSTooLLBox

is deterministic. As noted in Sect. 2.2.3, however, actual signatures exhibit considerable

noise, or random variation with time, even for constant aspect angle. All of the signature

comparison metrics available for this research assume a random noise component in the

signature. In particular, the Mahalanobis metric assumes Gaussian signature statistics,
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Figure 5.9. F-4, 50% Morph, and MIG-21. Note the difference in size between the three
models - often a key discriminant, where the target-sensor relative position
exploits size differences.

and requires a covariance matrix for computation of the weighted distance between two

signatures. The Mahalanobis metric was used in all of the proposed algorithms to provide

a comparison baseline, and obtaining some representation for HRR radar signature means

and covariances was essential.

Therefore, an analysis of actual HRR radar test results was conducted using test data

and software provided by the Wright Laboratory Target Recognition Technology Branch

(WL/AARA) [166, 20]. The data were taken from a ground station illuminating typical

aircraft in flight. Each signature encompassed hundreds of range bins over a classified

range extent, and hundreds of signatures were available for areas of small angular extent

or windows (say 10 x 10 degrees) on any given test set. Signatures were coded as to

discrete aspect angle value within each window, using aspect angle information recorded

by telemetry on the target aircraft. Thus, statistical information like means and covariance

matrices can be developed for signatures within the whole window or sub-windows on each

data file.

Three signatures chosen at random from a typical data set of this research were shown

in Fig. 2.1 in Chapter II. These results are from a 7 x 10 degree window over which 484

signatures were taken. Each of these signatures is actually the result of summing returns

from several dozen individual pulses taken over a period of much less than one second.
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The 128 range bin amplitude values shown are found by cropping a number of bins off

each end of the original signature, downsampling the remaining bins to 256 bins by taking

the maximum amplitude in each set of three bins, and finally cropping bins as required at

either end of the 256 bin extent to center the signature in the remaining 128-bin extent.

The length of the signatures is of the order of the size of an aircraft, so that the bin widths

lie in the range of 0.05 to 0.5 meters. The centering process is performed essentially by

correlating each signature with the m':an of all previous signatures.

These signatures are not normalized for total energy. Normalization has been used

to remove signature differences due to total energy, making the fundamental shape of

signatures for a single target more consistent with changes in aspect angle, or attempting to

reduce uncertainties due to imprecisely-known atmospheric transmission coefficients, radar

calibration, etc. However, the normalization can also increase ambiguity in comparing two

different targets. At this time, it appears that some form of energy normalization may be

required in HRR radar target recognition [166, 561.

The aspect angle window for Fig. 2.1 is positioned approximately in the plane of the

wings looking at the rear of the aircraft. The leftmost portion of this figure corresponds to

the rear of the target, and the figure extends in range to the right toward the front of the

target. It appears that there are three fairly strong and consistent scatterers in the area

of range bins 40 to 60. Since this is a jet engine aircraft, the HRR radar signature from

this tail-end aspect strongly exhibits the effects of multiple bounces within the rear engine

cavity - the "trailing" returns in the area of bins 80 to 100 are likely due to cavity effects.

Figures 5.10 through 5.12 show means and variances for collections of signatures

over three different aspect angle windows and three different aircraft. Fig. 2.1 and 5.10

correspond to the same signature set. Note that the the three scatterer locations evident

in Fig. 2.1 stand out "in the mean" on Fig. 5.10. Fig. 5.11 shows means and variances

from a set of returns over a window approximately 20 to 30 degrees off the nose of the

target aircraft, and Fig. 5.12 shows corresponding results from near nose-on (all signatures

are taken close to the plane of the wings). Since the origin target classes are unknown

(classified secret), it is difficult to say precisely how the major peak locations correspond

to physical structures on the targets. In Fig. 5.12, however, we can be reasonably certain
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that the first peak on the left corresponds to the forward fairing or bulkhead of the aircraft

frame. Remember that the forward fairing is of necessity transparent to radar waves if

the target aircraft is equipped with a nose-mounted radar (in which case the fairing is a

radome - note that this fact was considered in the earlier modelling efforts, e.g., Fig. 5.7).

The next peak to the right, then, may correspond to scatterers from the cockpit area, and

so on.

It is important to restate and emphasize that the downsampling technique employed

here was to to pick the maximum amplitude value from the three values corresponding to

three contiguous original bins. Other researchers have simply discarded two out of three

bin amplitudes - possibly discarding a high amplitude return in favor of a null value in

a neighboring bin. It is the belief of the author and others [19] that "pick maximum

amplitude from n bins" downsampling (where n = 3 in this case) is more likely to trap the

desired information. If a "pick every nth amplitude" approach is used instead, the mean

will be lower, and the variance higher, just as we would expect.

In any case, these plots show clearly that, even though individual signatures are

highly noisy, there is a definite statistical consistency in the signatures, even over these

relatively large aspect angle windows. They also support the conclusion that variance can

be treated as reasonably constant across the target range extent for a variety of targets

and aspect angles. Clearly, these results do not support the conclusion by some [561 that

HRR radar signatures "completely decorrelate" with small changes in aspect angle.

Most researchers treat HRR radar signatures as statistically independent from bin-

to-bin. In this analysis, the bin variance values were actually gathered as part of the

full covariance matrix for each set of HRR radar signatures, and correlation coefficients

were defined to show inter-bin statistical relatonships. For the 128-bin vectors shown here,

correlation coefficients were on the order of 0.7 for adjacent bins, dropping to roughly 0.3

for separations of five bins, and to roughly 0.2 for separations of ten bins. Thus, there is

significant bin-to-bin correlation, but this is to be expected due to (1) physical relationships

between the scatterers in adjacent range bins, (2) processing in the radar itself, and (3)

errors in signature alignment or range registration. Certainly, some portion of the variance

itself in these signatures arises from the errors in range registration.
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Mean Radar Signature, +-One Std. 0ev. (7x 10 degree window, 484 sigs.
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Figure 5.10. Measured Signatures: Means and Variances - Rear Aspect (test data taken
from tape GTwllAtran.datbr, results of [20], provided by [1661, with further
processing by the author)

Mean Radar Signature, +-One Std. 0ev. (9x1 0 degree window, 342 sigs -

0r

0L 20 4 0 6 0 a80 100 120 140
Range Bins

Figure 5.11. Measured Signatures: Means and Variances - Front/Side Aspect (test data
taken from tape GTw39Atran.dathr, results of [201, provided by [166], with
further processing by the author)
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Mean Radar Signature, +/- One Std. Dev. (9x8 degree window, 458 sigs.
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Figure 5.12. Measured Signatures: Means and Variances - Front Aspect (test data taken
from tape GTw49Atran.dathr, results of [20], provided by [166], with further
processing by the author)

Where the individual bin amplitudes are treated as Gaussian and a Mahalanobis (log

Gaussian likelihood) metric is employed, however, the assumption of bin-to-bin indepen-

dence allows the Mahalanobis distance computation to be reduced from a matrix-vector

and vector-vector (inner product) multiplication to two inner product multiplications. As-

sumption of constant variance across the target extent allows further reduction to one inner

product multiplication and a scalar division. Since the range registration process in general

will require these operations to be performed several times to find a maximum value for

any one association of an observed signature with a library signature, these opportunities

for reduction in on-line computation are important. In particular, as noted in Sect. 2.2.3,

the assumptions of bin-to-bin independence and constant variance allow this comparison

to be done only once in the frequency domain (this research was performed using range

domain alignment).

It is clear, however, that researchers generating noise samples for addition to some

mean to provide a truth signature or realization should not lightly assume bin-to-bin inde-
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pendencn. In this research, the bin-to-bin independence assumption was made consciously

to reduce computation in the simulation process.

Other investigation not shown in detail here supported the practice of treating the

noise in any one bin as Gaussian in units of decibels (to the extent that errors in range

registration allow us to examine processes in a single range bin), but this does not imply

that the HRR radar signature vector can be treated as a multivariate Gaussian process.

Treating radar cross section as Gaussian in decibels is equivalent to the use of the classical

"lognormal" statistical model for cross section in units of area [15:114), but the author

has found no formal analysis to the effect that this is a valid model for HRR radar cross

section. In some sources (e.g., [92]), no clear indication was given as to whether or not

radar cross section data treated a2 Gaussian was in fact given in units of square area (i.e.,

proportional to signal power) or log square area. Since it was desired to model signal

statistics at least to first order, this small effort was expended to gain confidence in the use

of dBsm as a unit of measure - the intent, however, was only to obtain some probabilistic

signature description, in whatever units.

Other issues of statistical interest not addressed here are the degree of independence

of signatures over time, with or without changing aspect angle, and the possibility of

multiplicative error sources. Our research will assume that the signatures are a function

only of target class, incident radar waveform, aspect and polarization angles, and that

noise in each HRR radar signature bin is additive, independent from bin-to-bin, white

(independent in time) And Gaussian in dBsm. Noise standard ieviations from five to nine

dBsm were used. As shown in Figs. 5.10 through 5.12, standard deviations of five to six

dBsm are supported by experiment: higher levels were used to increase ambiguity, thereby

accentuating improvements from the proposed recognition methods.

In conclusion, note that detailed statistical analysis of HRR radar signatures was not

an objective of this research - this subject was pursued only far enough to provide rea-

sonable information for simulation studies. The author believes, however, that additional

research in this area is much needed.
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5.3.5 Generating Simulated Signatures. The results of the previous section have

provided a general understanding of observed statistics for actual HRR radar tests on typ-

ical aircraft. This research used these statistics in two ways: (1) to generate noise samples

for addition to the deterministic bin amplitudes given by RCSTooLLBox, and (2) to de-

fine (diagonal) covariance matrices for use in Mahalanobis metrics. The RCSTooLLBox

signatures defined the "mean" signatures, and the test data-defined noise covariances pro-

vided baseline statistics for noise generation and definition of the Mahalanobis (covariance)

weighting matrix.

Each of the following figures contains two curves. Figures 5.13 through 5.15 contain:

(1) the deterministic RCSTooLLBox signature for a given target model (the F-4 shown

in Fig. 5.6), aspect angle, polarization angle, center frequency (10 GHz), and bandwidth

(1 GHz), and (2) one noise-corrupted signature, given by the sum of the deterministic

signature with a vector of independent noise realizations generated consistently with the

statistics defined above (a standard deviation of 5 dBsm, constant for all bins). The last of

the signatures generated under these assumptions, Fig. 5.16, is the counterpart of Fig. 5.14

for the MIG-21 model shown in Fig. 5.4; that is, a signature that would be generated

for a MIG-21 flying the same trajectory (accounting for fundamental differences in the

aerodynamics of the MIG-21 and F-4). Radar center frequency and bandwidth figures

were selected to be consistent with parameters observed to be in use by radar researchers

under contract to Wright Laboratory [21].

These signatures are taken generally from a nose-on aspect angle: the forward part

of the target corresponds to the left part of the signature, and the rear part of the target

to the right part of the signature. Each range bin is approximately 0.225 meters long. In

particular, the two peaks at -10 dBsm just after bin number 40 on the F-4 models are due

to cockpit scatterers, and the rather large return at range bin 80 is due to the rear engine

structure. In the MIG-21 signature, only one cockpit scatterer is present, and the engine

structure has largely disappeared, leaving only a small return from the tail.

The reader will observe that signatures Figs. 5.14 and 5.16 exhibit some similarities,

but remain distinctly different - particularly in overall length of the signature, owing to the

large difference in length between the F-4 (18 meters) and the MIG-21 (13.5 meters). The
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Figure 5.13. Simulated Signatures: RCSTooLLBox- Generated (Solid Line) and Noise-
Augmented (Dotted Line). F-4 Model, Frontal Aspect, 10 GHz Center Freq.,
1 GHz Bandwidth, 5 dBsm Std. Dev. Noise.
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Figure 5.14. Simulated Signatures: RCSTooLLBox-Generated (Solid Line) and Noise-
Augmented (Dotted Line). F-4 Model, Frontal Aspect, 10 GHz Center Freq.,
1 GHz Bandwidth, 5 dBsm Std. Dev. Noise (displaced from signature in
Fig. 5.13 by 0.8 sec., 1.83 deg.).

5-20



True and Noise-Corrupted Model Signatures

-10

-20

-25-

E -30 .:

-35

-40

-45-

-50"

"-0 210 40 60 80 100 120 140
Range Bins

Figure 5.15. Simulated Signatures: RCSTooLLBox-Generated (Solid Line) and Noise-
Augmented (Dotted Line). F-4 Model, Frontal Aspect, 10 GHz Center Freq.,
1 GHz Bandwidth, 5 dBsm Std. Dev. Noise. (displaced from signature in
Fig. 5.14 by 0.8 sec., 1.83 deg.).
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Figure 5.16. Simulated Signatures: RCSTooLLBox-Generated (Solid Line) and Noise-
Augmented (Dotted Line). MIG-21 Model, Frontal Aspect, 10 GHz Center
Freq., 1 GHz Bandwidth, 5 dBsm Std. Dev. Noise (corresponds for same
kinematics to F-4 signature in Fig. 5.14).
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Mahalanobis metric and other HRR radar signature metrics are very sensitive to signature

length, and, even with large standard deviation noise added, conventional (independent

look) algorithms operating on these simulated signatures have little trouble selecting the

correct target class. For real signatures, "multibounce" effects from the engine intake

cavities and similar effects would make these length differences less noticeable, and this

would increase ambiguity considerably.

Ultimately, sufflciently challenging recognition tests were found by defining scenarios

satisfying these conditions: (1) target models augmented with extra scatterers; (2) models

scaled to similar size and/or viewed at aspect angles where target size was not a factor;

(3) reduced radar bandwidth, so that range resolution was reduced; and (4) Gaussian

signature noise of standard deviation eight or higher (i.e., rather greater standard deviation

than values observed in actual data). The decision to reduce radar bandwidth was made

after consultation with Mr. Walter Barnes [11] of WL/AAR, who indicated that the 1

GHz bandwidth figures common to recent research efforts might not be practical in some

implementations, but that a reasonable simulation baseline would be approximately one-

third of the 1 GHz figure.

Figures 5.17 through 5.19 are typical of these "challenging" signatures. These are

taken from an aspect angle in which the plane of the wings is nearly normal to the sensor-

to-target or boresight vector, so that the overall range extent of the signature is minimized.

Figs. 5.17 and 5.18 are taken from the MIG-21 target model in Fig. 5.8, while Fig. 5.19 is

taken from a version of the SU-22 as in Fig. 5.5, but downscaled 20% to the size of the

MIG, and equipped with scatterers in locations corresponding to those of the MIG, with

the same scatterer radar cross sections. The aspect angle of Fig. 5.19 corresponds exactly

to that of Fig. 5.17 (identical aerodynamic characteristics are assumed). Finally, consistent

with the comments in the previous paragraph, the radar bandwidth for these signatures

was 333 MHz (10 GHz center frequency, as above) and noise standard deviations are set

to nine dBsm.

Comparing Figs. 2.1 and 5.10 through 5.12 to Figs. 5.13 through 5.19, the reader will

observe that the apparent "noise floors", or mean amplitudes for range bins that evidently

correspond to free space (atmosphere), are generally lower for the simulated signatures than
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Figure 5.17. Simulated Signatures: RCSTooLLBox-Generated (Solid Line) and Noise-
Augmented (Dotted Line). MIG-21 Model, Extra Scatterers, Top Aspect,
10 GHz Center Freq., 333 MHz Bandwidth, 9 dBsm Std. Dev. Noise.
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Figure 5.18. Simulated Signatures: RCSTooLLBox- Generated (Solid Line) and Noise-
Augmented (Dotted Line). MIG-21 Model, Extra Scatterers, Top Aspect,
10 GHz Center Freq., 333 MHz Bandwidth, 9 dBsm Std. Dev. Noise.
(displaced from signature in Fig. 5.17 by 0.8 sec., 3.67 deg.).
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Figure 5.19. Simulated Signatures: RCSTooLLBox-Generated (Solid Line) and Noise-
Augmented (Dotted Line). SU-22 Model, Extra Scatterers, Top Aspect,
10 GHz Center Freq., 333 MHz Bandwidth, 9 dBsm Std. Dev. Noise.
Corresponds for same kinematics to MIG-21 signature in Fig. 5.17

for the observed signatures. This is by choice. The deterministic noise floors returned by

RCSTooLLBox for the models shown above tend to lie between -50 and -80 dBsm. The

author consciously raised the noise floor for simulated outputs to values from -30 to -45

dBsm to provide a signal structure, or minimum-to-maximum amplitude range comparable

to that of the measurements. Since the peak simulation returns in general tend to be lower

than those for available test data (presumably due to the specular model effects noted

in Sect. 5.3.2), raising the simulation noise floor to the test-observed values of -30 to -35

dBsm would have left little signal structure for comparison.

For a few aspect angles, however, the specular model associations will produce very

high amplitude returns. It should be recalled from Sect. 2.2.3 that the range sweep gener-

ating process can be viewed as the convolution of a sinc-shaped radar pulse in range/time

(i.e., a rectangle in frequency with chosen center frequency and bandwidth) with an array

of scatterers represented as impulse (i.e., Dirac delta) functions. At certain aspect angles,

a scatterer may possess a particularly high cross-section, or impulse function magnitude.

For example, consider a flat, perfectly conducting plate normal to the incidence direction
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from a monostatic radar (i.e., a radar in which the transmit and receiver antennas are co-

located). The convolution process, then, will result in "range sidelobes", or "false" peaks

in the HRR radar signature, due to convolution of the high cross section scatterer with

side lobes of the sinc-shaped pulse.

This effect is observed in simulations and tests, but the specular nature of RCSTooLL-

Box models mean than the effect can be so pronounced for some models and aspects (e.g.,

the F-4 model in Fig. 5.6 at side-on aspects) that the HRR radar signature is raised to +30

dBsm or more in every range bin. Since the signature so generated looks like a wall, the

author refers to this effect colloquially as the "wall" effect. Due to effects of this nature, the

author inserted code to identify and skip "wall effect" signatures, and to limit or "clip"

individual high amplitude peaks. Clipping high amplitude peaks also tends to increase

ambiguity, which helps to demonstrate the proposed methods, as well as to provide more

realistic signatures.

5.3.6 Summary. This section has described the methodology by which simu-

lated signatures were generated for this research. The process selected, after consider-

ation of trade-offs for model availability, time, and fidelity, was to generate signatures

with RCSTooLLBox using models that resemble tactical targets of interest to first order.

Measurement realizations were generated by adding zero-mean, independent (from bin-

to-bin), white (independent in time, or from signature to signature) Gaussian noise to

the RCSTooLLBox "mean" signatures for true aspect angles on the model chosen to be

the "true" target. Noise statistics were fundamentally consistent with those for observed

signatures.

5.-4 Initial Concept Demonstration

5.4.1 Test Objectives. As a preliminary confidence-building test of the basic

motion-warping concept, an early demonstration was conducted using several key tools

planned for use in the proposed research. The objective of this research was to investi-

gate the potential for applying dynamic programming sequence comparison techmiques to

sequences of high range resolution radar signatures. Significant questions were:
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(1) Would a classical sequence comparison or dynamic time warping algorithm work at

all with a high range resolution radar signature comparison metric and sequences of range

sweeps?

(2) Would similar (close in an aspect angular sense) but non-identical sequences from the

same target produce small warping path distances?

(3) Would matches over the same or similar aspect paths between significantly different

target models produce significantly larger matching path distances than those seen in the

preceding case (2)?

The tools used in the test were:

(1) The Syracuse Research Corporation (SRC) HRR radar range sweep generator "SR-

CRCS" [53] - RCSTooLLBox was not yet available at the time of this initial set of tests.

(2) Aircraft target models for use with SRCRCS, provided by Wright Laboratory (WL/-

AARA) [166).

(3) The General Dynamics "slide distance" metric for inter-sweep "distance" [941, as dis-

cussed in Sect. 2.2.3.

(4) A simple time warping algorithm given in App. B of [176], with modification by the

author to reduce the cost penalty for warping path length. Specifically, we multiply the

added (new association point) cost for vertical and horizontal transitions (see Fig. 2.8) by

a factor of ½, so that the sum of added costs for one vertical and one horizontal transition

adds roughly the same cost as one diagonal transition, as discussed in [195].

This test did not require or employ a target tracker or aspect angle estimator algo-

rithm, since such algorithms had been successfully tested by others in the past [5, 77, 120,

1211.

5.4.2 Test Procedures. The test was begun by generating sequences of range

sweeps in the SRCRCS model using the "RTI" (Range-Time Intensity) option [53]. This

option provides radar range sweeps over a user-specified angular extent (some portion

of a "great circle" on the hypothetical aspect angle sphere) at discrete angular values.

Pairs of such sequences were then processed to extract peaks and the processed sequences
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were warped against each other, using the slide distance metric as an inter-sweep distance

measure.

Figs. 5.20 through 5.22 show three typical range sweep sequences, covering aspect

angular extents of 180, 90, and 90 degrees respectively over different paths, for aircraft

models similar to the F-4 in Fig. 5.6. Note that each plot consists of 37 "sweeps" at

discrete angle values, listed by sweep number along the lower right axis. Each sweep

consists of radar cross section values in 128 range bins, shown along the bottom axis. The

vertical axis shows radar cross section in decibel square meters (dBsm). The sensor can

be thought of as lying to the extreme left, so that the leftmost returns are closest to the

sensor.

With reference to the SRC X-Y-Z target coordinate frame in Fig. 5.1, Figs. 5.20

through 5.22 represent respectively the following basic aspect angle paths, typical of those

used in the test:

(1) Fig. 5.20: a 180 degree angular extent in the SRC X-Y plane, centered on the SRC Y

axis, with 37 sweeps taken at 5.0 degree increments. Thus, the angular extent of Fig. 5.20

lies in the plane of the wings, moving in azimuth angle from the right to left side of the

target. The center signature, or number 19 in the sequence from 1 to 37 as marked ir! the

figure, is nose on to the target. These signatures are taken from a generic F-4 model.

(2) Fig. 5.21: a 90 degree angular extent in the plane of the wings, centered on the SRC

X axis, with 37 sweeps taken at 2.5 degree increments. Therefore, this angular extent lies

from the right front (45 degrees azimuth) to right rear (135 degrees azimuth) of the target.

The center signature, or number 19 in the figure, is side an to the target. These signatures

are taken from a generic F-14 model.

(3) Fig. 5.22: a 90 degree angular extent in the SRC X-Z plane, centered on the SRC

X axis, with 37 sweeps taken at 2.5 degree increments. Therefore, the 90 degree extent

covered by Fig. 5.22 lies in the plane which bisects and is normal to the longitudinal axis of

the target, moving from -45 to +45 degrees in elevation. The center signature, or number

19 in the figure, is side on to the target. These signatures are taken from a generic F-16

model.
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Figure 5.20. Typical Range Sweep Sequence - F-4 model, 180 degree angular extent in
the plane of the wings, moving from the right to left side of the target,
centered on the target nose, with 37 sweeps taken at 5.0 degree increments.
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Figure 5.21. Typical Range Sweep Sequence - F-14 model, 90 degree angular extent in
the plane of the wings, moving from the right front to right rear of the target,
centered on the right wing, with 37 sweeps taken at 2.5 degree increments.
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Figure 5.22. Typical Range Sweep Sequence - F-16 model, 90 degree angular extent
normal to the plane of the wings, moving from the lower right to upper
right of the target, centered on the right wing, with 37 sweeps taken at 2.5
degree increments.

These signatures were produced with a center frequency and bandwidth of 1.25 GHz

and 1.0 GHz, respectively (taken from the example in the SRCRCS User's Manual [53:18]).

Note that Fig. 5.20 exhibits the "wall effect" discussed in Sect. 5.3.5 - these high-return

signatures at sweeps 1 and 37 correspond to the left and right sides of an F-4 model in the

plane of the wings, where the radar cross section is quite large.

Readers familiar with speech processing will observe the similarity between these

three figures and frequency vs. time plots of human speech - viewed from above, the

migrating peak locations (heuristically, "mountain ranges") in these plots bear an uncanny

resemblance to formant tracks [176:121-123], or high energy bands over time, in frequency

vs. time plots of speech. Formants are frequently used as features for dynamic time

warping in speech recognition [176:297], and the existence of similar structures in these

radar signatures (bearing in mind that true signatures have much more noise) was a strong

inducement to continue research.

Three basic types of tests were conducted: (1) sequences extracted from different tar-

get models over the same aspect angle range were warped against each other; (2) sequences
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extracted from the same model, but over slightly different paths, were warped together;

and, (3) sequences from different targets over slightly different aspect angle paths were

warped together. Additionally, some clearly undesirable matches were attempted as well,

matching two sequences taken from completely different aspect angle paths over the same

or different models. The tests did not consider noise.

5.4.3 Test Results. All in all, the test was very successful. The answer to each

of the questions asked above was yes.

(1) Dynamic "time" warping or classical sequence comparison did work with the slide

distance metric and sequences of range sweeps. The sequence expansions and compressions

characteristic of warping processes were observed where expected in these tests.

(2) Similar (close in an aspect angular sense) but non-identical sequences from the same

target did produce small warping path distances. Warping path distances between 0 (zero)

and 60 slide distance units (SDU) were generally observed for such cases.

(3) Matches over the same or similar aspect paths between significantly different target

models did produce notably larger matching path distances than those seen in the preceding

case (2). Warping path distances in excess of 150 SDU were generally observed for such

cases.

Some potential but expected problem areas were identified. In particular, it was

noted that for similar target classes (e.g., an F-14 and an F-15), the warping algorithm

may provide a closer warping distance for mismatched aircraft over a given identical aspect

angle path than for the same aircraft over slightly different (say 10 degrees "off-nominal

path") aspect angle paths. This was an early indication that "off-nominal path" errors

could be significant, and that a single "one-dimensional" sequence comparison for any

given target would not be adequate.

This observation can be stated in terms of expected ambiguity function behavior (see

Sect. 3.11.3) for movements or changes in aspect angle state and target parameter spaces.

It appears, for example, that the generalized ambiguity function for (1) comparison of

signatures from one path relative to those from other "close" paths on the same aircraft

(i.e., changes in aspect angle state history) may be more sharply peaked (i.e., exhibiting
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more downward curvature) than the generalized ambiguity function for (2) comparison

of this signature sequence to those from the same path over other (similar but different)

aircraft (i.e., changes in shape parameters). Clearly, this observation is valid only for the

observables, distance metric and aspect angle/aircraft mismatch ranges examined here.

Another problem was that the conventional warping algorithm used in this test al-

lowed no warp flexibility at the endpoints of the sequences, which were constrained to

match. For one case in which an F-4 model-derived -,,"ence was matched against a

slightly offset sequence, a very high matching cost was obtained. This was almost cer-

tainly due to the fact that the endpoints of one sequence were the high amplitude returns

from the sides of the F-4, while the endpoints of the other sequence were radically differ-

ent, and high costs from this endpoint mismatch could not be avoided. Ultimately, then,

an "unrestricted endpoint" technique [182], as applied in speech recognition for words

with uncertain start- and endpoints, was applied for classical sequence comparison-type

techniques to overcome this problem. Larson and Peschon-type techniques, not forced to

match each element along an aspect angle path, inherently have "unrestricted endpoint"

qualities.

5.4.4 Conclusion. In sum, this short test gave early confidence that dynamic

programming sequence comparison techniques could be applied to high range resolution

radar signatures.

5.5 Detailed Procedures for Motion Warping

5.5.1 Introduction. This section presents a detailed discussion of procedures used

in this research to apply dynamic programming sequence comparison techniques in target

recognition. These algorithms are basic applications of "motion warping" as defined and

discussed in Chapters I and III - elements in the second of three classes of kinematic-

feature observable fusion algorithms for object recognition, as proposed in this research.

In this section, we will develop procedures more specifically, ieferring to previous sections

where needed. Results are presented in the following Sect. 5.6.
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5.5.2 Tracking the Target. The first step in "motion warping" is to estimate the

target translational and rotational motion, or 6-DOF kinematic state. In this scenario for

aircraft targets, a conventional extended Kalman filter (see Sect. 2.3) and associated fixed

lag smoother (see Sect. 2.3.1.2) will estimate target position, velocity, and acceleration. The

fiter (tracker) development for this chapter uses conventional "kinematic" measurements

of target position (range and pointing angle) and range rate (doppler velocity) only - we do

not assume availability of pose estimates or other information regarding target acceleration

state or aspect angle.

To estimate rotational states or (equivalently here) aspect angle from translational

kinematics for aircraft targets, it is essential to determine the magnitude and direction

of the target's normal load acceleration (total target acceleration normal to the velocity

vector, less gravity) over the time of interest. Use of the smoother is therefore critical,

due to our inability to observe the pilot's commanded attitude changes in near-real time,

as Kendrick et al. could using pose estimates (see Sect. 2.3.3). Smoother equations (and

results) are given in App. C.6.

The extended Kalman filter employed here has a standard nine-state filter model -

target position, velocity, and acceleration along each of three orthogonal, assumed inertial

axes in the filter frame. The target acceleration model is the standard Singer model as

discussed in Sect. 2.3.2.1. Following the conventions for this model, the target acceleration

standard deviation along each axis is assumed to be 32 feet per second squared, and the

target maneuver correlation time is assumed to be 3 seconds. Consistent with the discussion

in Sect. 2.3.2.1, these parameters define the filter dynamics driving noise strength Q for

the acceleration states - no pseudonoise was added to other states.

The measurement model assumptions for target position and range rate are con-

sistent with those presented for the filter model in the previous chapter. Basically, (1)

measurements are assumed to be available every 0.1 seconds, (2) target position error is

modeled as white, Gaussian noise of standard deviation 100 feet, and (3) range rate error

is modeled as white, Gaussian noise of standard deviation 100 feet per second. Ownship

position and the direction and magnitude of gravity are assumed to be known perfectly -
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the amount of error in target aspect angle estimates from these assumptions is negligible

compared to error contributions from target position and velocity measurement noise.

Ultimately, it was found that even acceleration estimates from the smoother were too

"noisy" to provide the desired accuracy and smoothness in estimates of target acceleration.

The smoother provided an excellent estimate of target position, however - much improved

over the raw filter position estimate, and robust to mismatches in target model parameters.

For that reason, target acceleration was estimated by fitting target position in each inertial

dimension to a second degree polynomial curve, and differentiating the curve parameters

twice to derive acceleration.

5.5.3 Developing the Kinematic Aspect Angle Path and Error Bounds. The

kinematic aspect angle path is important for two reasons. First, for the true target, or truth

model, this path defines the aspect angle locations that generate the observed or measured

signatures. Second, for candidate target models in a target recognition algorithm, this path

defines a nominal set of points around which associations will be made between measured

and model signatures, out to some aspect angle limit defined by an appropriate set of

bounds. A typical path and bounds were shown in Fig. 2.9.a.

Both true and kinematically-estimated aspect angle paths are defined by tracing the

path over time of the target-to-sensor vector, denoted rb_-, coordinatized in body frame

coordinates (as shown by the superscript b), with time derivatives observed with respect to

the target body frame or hypothetical aspect angle sphere (for which derivatives a second

superscript will be added to rb, when required). For the truth or target model, this path

can be obtained directly - for the motion warping algorithin, it must be estimated based

on target kinematics and known dynamic restrictions of candidate target classes.

5.5.3.1 Developing the Kinematic Aspect Angle Path - Aircraft Targets.

The effort described in this section has two basic objectives. First, we seek to define a nom-

inal or kinematically-estimated aspect angle path and path angular rate, for a given target

model using some set of kinematic measurements. Second, using information developed

for the first objective, the latter part of this section will establish estimated covariances for
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the nominal angles and their rates. These covariances will be used to define aspect angle

windows, motion warping path constraints, and aspect angle state transition likelihoods.

See Figs. 5.23 and 5.24 for vector and angle definitions in the following discussion.

Recall that the velocity frame c, vector is defined by the direction of the flight path, that

the Y, vector is defined to lie normal to 4 in a plane parallel to the local horizontal (the

ii - 6 plane), and that - is defined pointing generally downward to form a right-handed

set. Note also that the perspective in Fig. 5.24 is somewhat misleading for a conventional

aircraft, due to the author's artistic limitations - actually, showing a positive lift in the

velocity frame Y - i plane, as the drawing implies, should tend to show more of the

ventral or bottom surface of the aircraft, due to the required angle of attack a.

Using the acceleration estimate derived from the polynomial curve fit to the smoothed

trajectory, the baseline (coordinated turn) system will estimate aspect angle for each po-

tential target class, using essentially the approach prescribed for the Kendrick estimator.

That is, acceleration normal to the velocity vector is assumed due to wing-generated lift and

gravity only, with no component from thrust, aerodynamic side-forces, or other sources.

The relationship between lift and angle of attack is given by:

L 1PatmV'SCLaa (5.1)

where:

L = lift force magnitude (aircraft mass assumed known)

Patm = atmospheric density

V2 = velocity magnitude squared

S = aerodynamic surface area

CLa = coefficient of lift

a = angle of attack

Thus, for these conventionally-controlled aircraft classes, normal load magnitude will

determine angle of attack for a given aircraft class and velocity, and normal load direction
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SENSOR ANGLE DEFINITIONS
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Figure 5.23. Coordinate Frame Definitions
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Figure 5.24. Accelerations for Coordinated Turns
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will determine roll angle. Sideslip velocity (component of velocity normal to the body

frame X•b - Zb plane) will be assumed zero. Consistent with the modelling simplifications in

the Kendrick and Andrisani efforts [120, 5] and other analyses [104, 143], our atmosphere

will be considered at rest with respect to the inertial frame, with on-line corrections to be

implemented if target-local wind velocity is available. Note also that, by arbitrary choice

of the direction of 1
b, we have defined the zero-lift angle of attack (ab, as in Chapter IV)

to equal zero. Unavoidable real world deviations from these "zero-nominal" assumptions

will induce some error into our estimates of aspect angle from kinematics, but we will size

our search areas in aspect angle adequately to deal with expected deviations.

For "control configured" classes of aircraft, unconventional assumptions will be made

to provide aspect angle as a function of kinematics - for example, an aircraft with "turn-

like-a-car" dynamics might be assumed to have only a nominal angle of attack, generally

keeping the target body vector aligned with the velocity vector, but rolling in the direction

of a turn for pilot comfort and visibility. In our research to date, we have assumed only

a conventional aircraft's coordinated turn motion - note that for any control method in

which the plane of the wings is essentially normal to the lift vector, minor deviations from

the coordinated turn dynamics result only in an aspect angle position bias error which is

ignored by our algorithms. Recall however, as discussed in Sect. 3.6.5, that inherently our

recognition algorithms are multiple model estimators - different possibilities or assumptions

as to dynamics add a second dimension to the range of hypotheses for which we must

compare models to observations, based on discrete choices for the dynamics assumptions.

The fundamental dimension in this range of hypotheses is of course described by the

different target signatures as functions of aspect angle.

Given some assumption on target body frame orientation relative to the target ve-

locity vector, we need to define the orientation of the body frame relative to the inertial

frame. This orientation is provided by the following computation involving direction cosine

matrices, which yields the body frame unit vectors in inertial frame coordinates:

Fb = CC b (5.2)
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where:

Fb = a three by three matrix, each row of which defines a target body frame unit

vector in inertial frame coordinates, and

cos(a) sin(p) sin(a) - cos(p) sin(a)
Cb = 0 cos(p) sin(p) (5.3)

sin(a) - sin(p) cos(a) cos(p) cos(a)

cos(iq) cos(-,) sin(i?) cos(7) - sin(,y)

C- sin(77) cos(17) 0 (5.4)

cos(q) sin(7) sin(iq) sin(7) cos(7)

and all angles are defined in Figs. 5.23 and 5.24.

Thus, the velocity frame is found relative to the inertial frame by use of the Euler

angles identified as heading (71) and flight path (7) angles. The body frame is found

relative to the velocity frame by considering (for coordinated turns with zero sideslip

angle) the calculated roll angle (p) and angle of attack (a) required as discussed above to

generate the required normal acceleration. Other appropriate assumptions are made for

unconventionally controlled vehicles. Again, for the truth model or simulated target, these

quantities are known - for the motion warping processor, they are estimated.

Given C', the target-to-sensor unit vector is defined in target body frame coordinates

as

& Cb (5.5)

where we have simply divided the target-to-sensor vector in inertial coordinates by its

magnitude and performed the coordinate transform.

With the target-to-sensor unit vector defined in target body frame coordinates, we

now calculate the target aspect angle (azimuth r. and elevation A of the target-to-sensor

vector, see Fig. 5.23) using the following relations (where the superscript b., for example,
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means the component of the associated target-sensor unit vector in the target body frame

Xb direction):

ic =tan (-' (5.6)

for positive _. and ib or

Kt = tan-' ( b + 3600 (5.7)

for negative _.b'° and positive i?=., or

/ -. b• \

. = tan- + 1800 (5.8)

for positive or negative Ftb_,. and negative i;bt, and

A = si (- ) (5.9)

for positive i•'_., or

A = sin-'(ieb_5 ) (5.10)

for negative ibt0 (note that due to SRC model definitions, positive elevation angles are

toward the negative Zb direction, as shown in Fig. 5.23).

Using the time derivatives of the matrix C0 and the target-to-sensor vector in inertial

frame coordinates, we can define the time derivative of the target-to-sensor unit vector with

respect to the body frame, in target frame angular coordinates. This quantity will define

the (nominal) angular rate along the kinematically-computed aspect angle path. The rate

of change of the target-to-sensor vector, with respect to the body frame, defined in target

body frame coordinates, is given by:

dr , b drt,'

t- -+ C b 6dt- b (5.11)

where:
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b the time derivative of Cb, element by element

and the first superscript on derivatives of r refers to coordinatization, while the second

refers to the frame with respect to which a derivative is taken.

Dividing the above rate by the length of rb,- and taking the component of this

normalized rate perpendicular to the unit vector yields the traverse rate, in radians per

second, of the aspect angle vector along an instantaneous "great circle" path (of generally

constantly changing direction) on the hypothetical aspect angle sphere of unit radius.

This traverse rate is now the estimated mean aspect angle rate. If desired, this rate can

be isolated into components in azimuth and elevation directions, as defined in Fig. 5.23.

Thus, by the previous sequence of computations, we have estimated the (kinemat-

ically observable) angular position and rate of i_, (as observed from the target body

frame). Recapping, these aspect angle changes are assumed primarily due to (1) pitch

control (changing angle of attack) to change the magnitude of normal acceleration, or (2)

roll control to change the direction of normal acceleration, or (3) (less rapid) target motion

along curved portions of the trajectory (no change in acceleration relative to the target

body frame), or (4) motion of the sensor along the ownship trajectory (the latter assumed

known).

Clearly, in the absence of normal acceleration followed in turn by velocity and position

changes, target aspect angle changes are unobservable, in the estimation theory sense, to

our kinematic estimator. The absence of normal acceleration implies that the aircraft is

flying an essentially straight (not necessarily level) trajectory, perhaps with a non-zero roll

rate. In any case, this class of trajectory is of minor interest to us for two reasons. First, a

combatant (as opposed to commercial or military transport) aircraft target seldom flies in

a straight line for long periods, unless the pilot is unaware of being tracked (it is generally

assumed that an adversary's warning systems will alert him to the presence of active

sensors). Second, the fact that the target is flying a straight trajectory implies (unless the

target is rolling) that the target-sensor aspect angle is not changing significantly - thus,

the high information content characteristic sequences that we seek will probably not be

available anyway.
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However, should we desire to estimate the target's orientation in straight flight,

reasonable assumptions can be made. In most cases, the aircraft will be flying with "wings

level", i.e., the plane containing the body frame Xb and Zb unit vectors will be perpendicular

to the local horizontal plane, and the body frame pitch angle can be estimated from the

flight path angle and the angle of attack required to counteract the normal component

of gravity. In Sect. 6.2, techniques derived from word spotting in continuous speech with

dynamic time warping will be proposed to identify target rolling motion and class in the

absence of normal acceleration.

5.5.3.2 Bounds Around the Kinematic Aspect Path. The preceding, or first

part of this discussion has addressed only the determination of the nominal kinematically-

estimated aspect angle path. The ranges or bounds of probable errors in the start and end

points of this path, in the angular rates at which the path is traversed, and "off-nominal"

errors can be estimated from the statistics of the errors in the kinematic estimates for

velocity and acceleration.

The aspect angle position and rate error bounds will in turn define the continuity

constraints for dynamic programming sequence comparison methods. With reference to

the "gridded" aspect angle region in Fig. 2.9.a, these bounds will define the width of

this region, and the length of this region, or "window" to be checked for any one target

signature.

The problem here is that the relationships between kinematic state estimate errors

and aspect angle estimate errors are highly nonlinear in general. For this research, adequate

linear approximations were made by defining distributions of starting values about the

nominal positions and rates according to the equation:

PA = EPET (5.12)

where:
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PA = is a first order (linearized) covariance estimate, at any nominal aspect angle

along the trajectory, for the error in the angular position and angular rate of the nominal

aspect path, in the direction of and normal (cross-track) to the path (a 4x4 matrix).

E = is a 4 (row) x 6 (column) dimensional Jacobian matrix of partial derivatives,

defined by determining the partial derivatives of angular position and rate along and nor-

mal (cross-track) to the nominal path (four separate quantities), with respect to the target

velocity and acceleration components along each inertial frame axis (a total of six compo-

nents).

P = is the (estimated, from an extended Kalman filter and associated smoother)

covariance of the target velocity and normal acceleration estimates.

The along-track and cross-track angular error bounds at each measurement observa-

tion time allow us to subdivide the total aspect angle region shown in Fig 2.9 into allowable

aspect angle regions, or windows, at each time. These windows or subregions will in general

overlap, as shown in Fig. 3.2 in Chapter III.

The along-track and cross-track angular rate statistics given by PA, then, allow us

to estimate quantitatively the likelihood of transitions between any two aspect angle states

on adjacent windows over a given measurement time interval AT = tA+l - tk. Since we

have an estimate for the mean aspect angle rate as found in the previous section, we can

estimate the natural logarithm LT of the Gaussian classical likelihood of the rate implied

by a such a transition (less the usual constant term). This in turn can be taken to provide

the natural logarithm of the a priori aspect angle transition likelihood p(x+ 1 x, ZI , w,),

as discussed in Sect. 3.6 with respect to the Larson and Peschon equations:

LT = [Ip(n +1 I x',Z•,,,)] C m

- 0.5[(AXzT AT)(A ,CT )-[A T - AT..AZT

AT A T )T -T - 1'CT)] (5.13)

where:

LT = the log Gaussian classical likelihood (less the usual constant term C) of the

transition rate implied by movement in aspect angle between two given aspect angle cells
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x and x' 1 over one measurement interval AT, for some target class w1, given m kinematic

measurements Z."

PAR = a 2 x2 matrix, the lower right sub-matrix of PA

AzT = the along-track component of the difference in angle between the two given

aspect angle cells x" and x,+, (i.e., the angle component along the direction of the mean

expected aspect angle rate)

Az•CT = the cross-track component of the difference in angle between the two given
aspect angle cells xa and xa+

rAT = the mean expected aspect angle rate in the along-track direction, which is

found as discussed in the previous section (see Eqn. (5.11) and associated comments)

rCT = the mean expected aspect angle rate in a cross-track direction, which is equal

to zero by definition

C = the usual factor associated with the natural logarithm of the leading term of a

Gaussian probability density, a constant for constant PAR.

and other terms have been defined.

The natural logarithm of the likelihood for the a priori starting state p(x Zd, w0) is

defined in an analogous fashion, using the upper left 2 x 2 submatrix of PA, corresponding

to covariance of angular position about the mean or nominal aspect angle estimate from

kinematics at time to (strictly following the Larson and Peschon methodology, this is one

time interval prior to the first signature measurement).

It is important to remember that the accuracy of these estimates for angular position

and rates and associated transition likelihoods are completely dependent upon the extent

to which the kinematic state estimator model matches the actual target behavior. Recall

that in the effort discussed in this chapter, we assume that the target acceleration relative

to the body frame is constant - in other words, a constant turn rate model (not necessarily

a planar turn). We depend here upon the analysis of kinematic observations (by extended

Kalman filter / smoother / curve fit) to ensure that the target is in fact executing a

constant acceleration turn as HRR radar signatures are taken. In Chapter VI, we will
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combine ideas from Sect. 3.4 and Chapter IV to free us from dependence on the smoother

and constant acceleration turn model, as previewed in Sect. 3.9.

Straightforward extensions of Eqn. (5.12) allow for calculation of angular position

and rate error "covariances" due to filter state errors and errors in assumption of other

variables such as coefficient of lift CLa (normally assumed at some nominal), sideslip angle

(normally assumed zero), as well as off-nominal path errors and error rates. Note that this

technique can also be used to estimate a (pseudo-) measurement error "covariance" for

the aspect angle pseudo-measurement provided to the aspect angle Kalman filter in the

Kendrick estimator (this value was a fixed input in the Kendrick research).

These careful computations of aspect angle position and rate error may not seem

worth the effort, but they yield a great deal of interesting information. They show, for ex-

ample, that the usual assumption of "square" [164] or "circular" [20] aspect angle windows

for searches on aircraft target models is probably suboptimal when target kinematics are

reasonably well known - generally, the window extent should be greater in the direction

of possible angle errors due to target roll than it is in the direction of angle errors due to

changes in pitch or angle of attack. Since computational loading is driven by window size

(and the discretization fineness or granularity of aspect angle cells in the window) optimal

sizing of aspect angle windows could be a significant issue.

For most of the trajectories in this research, the "along-track" direction corresponds

to changes in pitch, and the "cross-track" direction corresponds to changes in roll. Accord-

ingly, a typical aspect angle window size in this research was 10 degrees in the along-track

direction by 20 degees in the cross-track direction. For a two-g 'urn tracking scenario like

that for Fig. 5.27 and others to be discussed in Sect. 5.6, this corresponds to approximately

+/- two standard deviations of angular position error for both along-track and cross-track

aspect angle position, as estimated from kinematics, or correspondingly more standard

deviations of error for higher acceleration turns (these angular standard deviations are the

square roots of the first two diagonal elements of the matrix PA above). Simply, the harder

the aircraft turns, the more one can be sure of its aspect angle.
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5.5. 3.3 Ground Targets. Derivation of kinematically-estimated aspect an-

gle and aspect angle rate for ground vehicles is quite anaiogous to the above, except that

the coordinated turn assumption (or other assumption as appropriate) is replaced by as-

sumptions that the vehicle is generally pointed in the direction of its velocity vector, and

that turns occur on a flat surface, or that the surface at the vehicle location is reasonably

well known (as from stored map data).

5.5.4 Extracting the Kinematically-Estimated Feature Observable Sequence. As

shown in Fig. 3.2, we have used kinematic measurements to define, for each potential target

class, a set of aspect angles or "map" over which we will make comparisons with observed

signature measurements. The next step is to load or associate the map "cells" with library

signatures from the database corresponding to the desired target model.

There are any number of more or less efficient ways to approach this software en-

gineering issue. In this research, the map is simply a Fortran array which can be loaded

with aspect angle values, and the library signature value closest to each map aspect angle

is found by testing each library signature's aspect angle against each map value as the

program reads the entire library signature file. If a library signature within one degree in

aspect and ten degrees of polarization is not found for each map cell during the library

read operation, an error advisory prints to output.

For actual on-line operation, a much more efficient method would be to "point" or

reference the map location to the desired library element. That was not done for this

research to avoid keeping all of the libraries loaded in storage at all times. This and

subsequent processes can be performed identically for ground and air targets.

5.5.5 Comparing the Measured Sequence to the Candidate Target Signatures. At

this point we have a sequence of actual signature observations from some "true" target,

and an aspect angle "map" loaded with appropriate signatures for some candidate target

class. The map is subdivided into aspect angle windows, or search bounds corresponding to

each signature measurement time. We wish to compare the observed signatures to the map

signatures and quantify the maximum joint likelihood (or a comparable measure) that the
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observed signatures came from the candidate target class. A number of algorithms have

been investigated for this task.

Those algorithms to follow which employ dynamic programming are implemented in

simple code structures of the following form (see [176:App. B]). Note that computations

for the many aspect angle cell / target model combinations can and should be done in

parallel for fast on-line execution, but that was not implemented in our simulations.

(1) (Loop 1) For each window (equivalently, the current signature):

(2) (Loop 2) For each aspect angle cell in the current window (the current cell):

(3) Compute likelihood or cost of generating the current signature from this cell.

(4) Compute allowable predecessor cells (none for first window).

(5) (Loop 3) For each allowable predecessor cell:

(6) Compute joint sequence likelihood to current cell, or other measure of path cost.

(7) End Loop 3.

(8) Select allowable predecessor cell giving maximum joint likelihood or minimum total

cost to current cell, and store this value, predecessor cell location (pointer) and other data

as required, referenced to the current cell location.

(9) End Loops 1 and 2.

(10) Select maximum joint likelihood / minimum total cost cell in final or latest window

and retrace pointers to find best path.

We now discuss the individual algorithms compared in this research. The discus-

sion to follow assumes the use of classical likelihood functions or related quantities (e.g.,

Mahalanobis metrics) for observed signature-to-map signature comparisons.

5.5.5.1 The Independent Look (IL) Algorithm. The IL Algorithm is

a conventional "independent look" decision theoretic target recognizer as discussed in

Sect. 2.2. No restriction is placed on the resulting "pose estimate" sequence - we find

MAX ln[p(zf I X~k, ] within the specified aspect angle window at each measurement

time tk. These values are summed incrementally at each event to find the natural logarithm
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of the maximum joint likelihood. With reference to Fig. 3.2, this means that the recognizer

is free to choose any sequence of aspect angles on the map, so long as each aspect angle

choice falls within the proper window.

5.5.5.2 The Perfect Knowledge of Aspect (PKA) Algorithm. The PKA

Algorithm provides an upper bound on recognition performance in that it assumes that the

recognizer knows perfectly the true aspect angle over time for each target class executing

the observed maneuver. For the Mahalanobis metric, this figure is simply the natural

logarithm of the joint maximum (classical) likelihood for known or true aspect angle xt,,

over time, In {I",=1 [p(z, I x••, wi)]}. These values are summed incrementally at each

event to find the natural logarithm of the joint likelihood. Note that if the kinematic

aspect angle estimate is poor, or aspect angle error bounds are too low, the sequence of

true aspect angles may not even fall on the map in Fig. 3.2, even for the true target.

5.5.5.3 The Fixed Bound (FB) Algorithm. The FB Algorithm is an im-

plementation of the Le Chevalier algorithm, as that approach is believed to work: the

algorithm has no information from kinematics on the expected direction of aspect angle

change, but knows that the change is bounded. No subsequent processing is applied. This

algorithm was illustrated in Fig. 3.11. The algorithm finds the natural log of the term in

Eqn. (5.14) (a modification of Eqn. (3.11)) as discussed in Sect. 3.6. Note that the term

p(Zfk I X,•b,k,Wi) means specifically that this term is the joint classical likelihood of the

observed Zf, conditioned on their having been associated with the aspect angle sequence

X'b,k found by the fixed bound process on model wi.

P(Zf I :Xb,k, W,) =

f MAX I* (x',,k Iwi)l = MAX [p(zf I x-,wi) FI(x 1,'"' k - 1 w,)1,(5.14)

5.5.5.4 The Larson and Peschon (L&P) Algorithm. The L&P Algorithm

finds the natural log of the term in Eqn. (3.11). Note that the numerical values of

this algorithm include contributions due to the a priori aspect angle transition likelihood
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xContributions associated with the L&P "a priori" state x3,, were

not included, to provide for unbiased comparison with the results of other algorithms (none

of which include such a term, although they could in theory).

The process involved in calculating the likelihood of a given path was illustrated in

Figs. 3.3 and 3.4 of the last chapter. Computations for this algorithm proceed exactly as

for the FB algorithm, except that log transition likelihoods are summed along with log

likelihoods of observed signature generation.

5.5.5.5 Classical Sequence Comparison - One Dimensional (1-D Warp).

The 1-D Warp Algorithm defines contiguous one-dimensional paths in aspect angle, par-

allel to and including the "nominal" path given by the extended Kalman fiter/smoother

kinematic estimate. An algorithm functionally identical to one-dimensional, unrestricted

endpoint [176, 182] dynamic time warping is performed along each trajectory, as discussed

in Sects. 2.4.2 and 3.7.2. The basic form requires contiguous matching - every aspect angle

cell along a given path must be matched to a measurement. In this research, each local

path cost is normalized by the total number of associations along that path, and the path

with minimum normalized cost at the final (or latest) aspect angle window is selected as

the best path. The output likelihood value can be taken from this normalized cost, or it can

be taken from the "best" individual match for each signature along the selected contiguous

path (the latter choice is used in the results shown below, to achieve the minimum cost or

maximum likelihood on the true model, for better comparison with the other algorithms).

Best path selection based on normalized cost is a departure from usual DTW practice,

and can lead to violations of the "Principle of Optimality" [23], but worked well in our tests,

since for the proper match of measurements to target class, and constant measurement

noise statistics across the target length, the local average matching cost is expected to be

near the global average. Without such normalization, however, in the scenarios used here,

conventional ("contiguous") sequence warping often fails to follow an optimal path on the

true (unknown a priori) target model (i.e., a path close to the origin locations of the true

signatures). This failure in turn causes a poor reference point for comparison to matches

on the incorrect models.
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The desire for local path normalization is driven by a particular combination of

factors in the scenarios investigatCd here. In a typical case for this research, we may have

six observations taken at 0.4 second intervals, giving an elapsed time of 2.4 seconds. Now

over this same period, an aircraft target executing a constant 4-g turn in some horizontal

plane at a speed of 800 meters per second will exhibit a 22.0 degree aspect angle change

to a stationary observer in the same plane. Assuming a 1.0 degree granularity signature

map, and some overlap (say 5 degrees) at each end of the aspect angle "map" to allow for

bias uncertainties in the target aspect angle, we may have 22 + 2(5) = 32 horizontal cells

in our aspect angle map. Thus, the ratio of elements in the two sequences to be compared

is 6/32.

If the correct association proceeds in an essentially linear fashion (6 observations

matching to 22 map cells), we expect that each observation will associate with approx-

imately 4 map elements. This 6/22 ratio is much less than the 1/3 ratio that previous

researchers in speech processing found to be the minimum acceptable [168, 181]. The

practical effect of this small ratio is that, without some form of compensation, the six

observations will match to considerably fewer of the map elements than 22. For the true

target, this will result in a match that is non-optimal in a practical sense - providing sig-

nature likelihoods that are a poor basis for comparison with results from incorrect target

model associations (of course, the true target is unknown a priori). The probability of

correct recognition will be very low.

The problem is that the classical dynamic programming equations given in Sect. 2.4.2

lead toward a bias for shorter paths in the lattice of Fig. 2.8. Previous researchers have

addressed this issue by a wide variety of continuity constraints that reduce the penalty

for longer or "non-diagonal" paths, such as the method discussed in Sect. 5.4.1. Several

researchers have pointed out that the objective is a path-length normalized warping cost,

but have maintained that this normalization cannot be made locally at each step in the

dynamic programming process, since the minimization process is made locally based on

cost for each path only [168].

In this research, however, the author has done just exactly that - normalized locally,

based on the total cost and number of associations in each candidate predecessor path.
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The point here is that dynamic programming does not restrict the user to make local

decisions based only on cost to a given point 171:121. Information other than path cost

can be retained and used for later decisions. That being said, the concept of performing

an addition and a division for each cost calculation is a significant deviation from usual

dynamic programming practice, and not one to be used lightly. However, represented in

usual dynamic programming form as a sum of costs at each stage, path normalization can

be considered simply as a case in which incremental costs at each stage are a (complicated)

function of the path to that point, and philosophically, dynamic programming practice

provides for this case.

Referring back to Eqn. (2.29), the process of path cost computation with local length

normalization can be written (and executed in the otherwise usual fashion) as shown below

in Eqn. (5.15): this is essentially Eqn. (15) of [168].

D.(Ck) = d(ck) + (k - 1)MIN[D,,(Ckj)] (5.15)
k

where:

ck = [aj, b,] is the k-th element in a sequence of allowable associations of elements

from sequence A with elements of sequence B, this particular association being between

element a, and element b,

Ck = {c, c2, c3 ,... ., cA;}, the minimum normalized cost sequence of associations lead-

ing to and including association ck

d(ck) = the cost or distance of association ck, i.e., the distance in some metric between

element a, and element b,

D11(Ck) = the normalized cost of reaching and accomplishing association ck by the

minimum normalized cost sequence of allowable associations

D(Ck) = kD•(Ck) = the total cost of reaching and accomplishing association ck by

the minimum normalized cost sequence of allowable associations

The key concept to keep in mind is the "Principle of Optimality", which, reworded

somewhat from the discussion in Sect. 2.4, says that dynamic programming will yield
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SPACE OF WARPING
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Figure 5.25. Violation of the Principle of Optimality From Local Path Normalization

the optimal path, when the locally optimal path (during the matching process) lies on the

globally optimal path. Now, for a local normalization process, it is very simple to construct

a set of conditions in which the locally optimal (minimum average) path does not lie on the

globally optimal path. Fig. 5.25 shows such a case - note in the figure that at point C, a

dynamic programming algorithm using normalized path cost would select the "false" path

from B to C as the predecessor route, while in fact the "true" path in a globally optimal

sense is from A to C, and on to point D. Thus, local normalization can lead to violations

of the Principle of Optimality.

However, in the particular application discussed here, we expect that in a particularly

important case, the local average path cost will equal the global average path cost. This

occurs when three conditions are satisfied: (1) the observations and library map correspond

to the same target model, (2) the aspect angle transition rate (from kinematics, generally)

used to define the map is close to the true one which generated the observations, and (3) the

signature noise process statistics are constant over the aspect angles and times of interest.
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Now condition (1) will apply when we are making a correct target-model association, for

a well-modelled target. Condition (2) applies when we have a good kinematic estimate of

aspect angle rate. Finally, as noted in Sect. 5.3.4, Condition (3) appears to apply to HRR

radar signatures in particular and perhaps others in general.

In other words, when making a correct target-to-model association with good track-

ing information, local path normalization may not change our answers significantly. The

benefit of normalization is that it allows us to demonstrate a "contiguous" path matching

concept in this scenario - the disadvantage of normalization is the computational cost of

the division operations. As noted above, normalization is essential to allow the algorithm

to make a correct match on the true (unknown a priori) target model. What happens for

incorrect target associations is irrelevant, as long as the matching path cost is higher than

for the true target model.

In any case, we must observe that in speech processing, obedience to classical rules

for dynamic programming sequence comparison frequently leads to matches that are not

"optimal" in a practical sense [168]. This is where the "art" in the "art and theory

of dynamic programming" [71] has to be applied [181]. The author's use of local path

normalization is such an example, and it worked as intended, as we shall see in Sect. 5.6.

Closing this discussion on path normalization, it is important to emphasize that the

desire for normalization was only driven in this case by the high ratio of library aspect angle

cells to measurements. This ratio is a function of the desired discretization of aspect angle,

the signature sampling interval, and the target turn rate. Under conditions where the ratio

of library aspect cells to measurements is lower, normalization will not be required, as it

is not for conventional applications.

Finally, recall that in Sect. 3.8.2, it was noted that conventional sequence comparison

may have a potential for reduced computational requirements in comparison with an al-

gorithm with Larson and Peschon-type continuity constraints, since conventional sequence

comparison algorithms tend to limit the number of predecessor points severely. In the im-

plementation discussed here, this potential is reduced by the need to normalize, or divide

by the total number of associations along each path.

5-52



5.5.5.6 Classical Sequence Comparison - Two Dimensional (2-D Warp).

The 2-D Warp Algorithm uses the same set of trajectories defined for the one-dimensional

case, but local continuity constraints allow the optimum path to move from one trajectory

to its right or left neighbor (see Fig. 3.8). Other factors are as for the one-dimensional

case.

Note that for any given aspect angle cell in any window, we must now consider up

to six possible predecessor paths - three from adjacent cells in the same window and three

from cells in the previous window. The dotted line labeled "2-D" in Fig. 3.8 showed how a

particular association trajectory might proceed. The path length normalization process is

just as in the previous section. Thus, we have increased the dimensionality of the problem,

but allowed the algorithm to respond to "off-nominal" path conditions where the true path

is not parallel to the nominal or kinematic path.

Like other "tuning" issues associated with all of these dynamic programming se-

quence comparison algorithms, this increased "flexibility" has pros and cons, as implied in

Sect. 3.7.2. From the pro perspective, loosening kinematic restrictions on signature match-

ing will help an algorithm to find the best match on the true (unknown a priori) target

model, if the kinematic state estimate, or basis for restrictions, was significantly incorrect.

From the con perspective, loosening kinematic restrictions will tend to allow an algorithm

to find an improperly close match on an incorrect target model. Limiting the latter effect,

of course, was precisely our original objective.

In any case, where kinematic information provides an accurate estimate of the direc-

tion of aspect angle change, we expect that the one dimensional algorithm will outperform

the two dimensional one - the two algorithms will provide essentially the same answer

for the true (unknown a priori) target model, but the flexibility of the two dimensional

algorithm will allow it to find an undesirably close match on some incorrect target model.

Conversely, if the true and kinematically-estimated aspect angle paths cross (are not par-

allel), the two dimensional algorithm will have a better chance of "finding home" on the

true target model - the lower cost it achieves here may offset any penalties incurred by

finding an improperly close match on an incorrect target model.
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5.5.6 Conclusion. The material in this section has covered the operation of the

dynamic programming-based sequence comparison techniques and conventional or ideal

algorithms against which they will be evaluated. It should be clear that the various algo-

rithms have competing advantages and disadvantages with respect to optimality, compu-

tational burden, etc. In the next section, we will evaluate the relative performance of these

algorithms, using both conventional performance measures and the generalized ambiguity

function, as discussed in Sect. 3.11.

5.6 Research Results and Discussion

5.6.1 Overview. The following subsections discuss key observations regarding

the results of simulations constructed as outlined in the previous part of this chapter.

Additional equations, results, and observations regarding the operation of the kinematic

smoother per se are given in App. C.

5.6.2 Kinematic State Estimation. For this research, the nine state extended

Kalman filter discussed in Sect. 5.5.2 was implemented using the "Multimode Simulation

for Optimal Filter Evaluation" (MSOFE) software package [46]. The smoother and target

recognition algorithms were implemented separately using a file structure developed from

that which links MSOFE with the associated plot postprocessing routine, "MPLOT".

Fixed lag smoother "lags" of two to three seconds were found to be entirely adequate -

estimates of aspect angle and rate were established with adequate quality to permit the

sequence comparison algorithms to work as expected. Fig. 5.26 shows extended Kalman

filter and smoother performance in estimating one inertial component of target acceleration

over 20 runs, where the true target acceleration is two g's (64 ft/sec2) during the period from

three to eleven seconds and zero elsewhere. The upper solid curve is mean extended Kalman

filter error (similarly bounded on either side by curves for the mean extended Kalman

filter error +/- one standard deviation), while the lower solid curve is mean smoother error

(bounded on either side by curves for the mean smoother error +/- one standard deviation).

The smoother delay here is 2.0 seconds - the smoothed estimate (curve number two) is

available from 2.0 to 11.9 seconds, using filter information out to 13.9 seconds (the filter
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Figure 5.26. Acceleration Estimation Error: Mean +/- One Standard Deviation

runs on until 15.0 seconds). Note that the filter starts with true and estimated acceleration

equal to zero - hence the zero error at the start of the run.

As noted earlier, although the optimal smoother did an excellent job of correcting

extended Kalman filter state estimates as shown here, acceleration estimates were still

too noisy from measurement event to measurement event to provide smooth aspect angle

estimates, particularly in state directions where insufficient true acceleration made use of

the optimal smoother pointless [154:111. Also, the smoother-derived acceleration estimates

were rather more noisy than desired for identifying steady-state acceleration conditions,

which indicate target turn events for recognition. Nominally, a steady-state turn event was

identified when estimated target acceleration in the target body frame remained within
2+/- 5 ft/sec of a running average over a one-second period. To meet these stringent

smoothness conditions, second degree polynomials were fitted to the fiter/smoother po-

sition estimates, and differentiated twice to obtain an acceleration estimate with error

magnitudes that closely follow the mean smoother value in Fig. 5.26. Additional plots

showing fiter, smoother, and curve fit results are provided in App. C.
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The disadvantages of smocthing are added processing and the fact that our target

information is no longer real time. In general, we found that a high quality (+/- 20%)

estimate of the target acceleration was obtained with a four-second delay - two seconds for

the fixed-lag smoother and two seconds for polynomial curve fitting. Following onset of a

major maneuver, 2-3 more seconds of delay are desirable to identify steady state conditions

(note how the fixed lag smoother mean error curve in Fig. 5.26 begins to level out near the

five second point). In any case, as shown in Fig. 5.26, for a 2-g turn lasting as little as eight

seconds, the target acceleration can be estimated with high confidence for approximately

five seconds (i.e., from approximately the 5 second point to the 10 second point). As we

will show below, the advantage accrued in better state estimates can be well worth the

wait and processing, particularly for turning accelerations in excess of 1 g.

Once the target velocity and acceleration states are estimated and assumed to be in

steady state relative to the target body frame, calculation of target-sensor aspect angle

and aspect angle rate are straightforward for any set of assumptions on target control

parameters, as shown in Sect. 5.5.3. Even for the relatively large kinematic measurement

errors modelled in this research, after smoothing and curve fitting, kinematically-based

aspect angle estimates were never observed to lie more than ten degrees from the true

(coordinated turn) figure. Aspect angle rates were never more than 25% in error. Even

with high quality kinematic measurements, aspect angles defined from filtering without

smoothing were often subject to much larger errors, particularly at the onset of turn events.

For example, note in Fig. 5.26 that, at the 4-second point, the mean error in the

filter-estimated acceleration is approximately 50 ft/sec2, while the mean error in the

smoother-estimated acceleration is only about 15 ft/sec2. Therefore, depending on the

sensor position, an aspect angle estimate based on the corresponding mean filter acceler-

ation estimate could be in error by as much as 40 degrees - the difference between roll

angles required to achieve (1) 64.4(true) - 50(error)•15 ft/sec2 and (2) 64.4 ft/sec2 (two g's,

true) horizontal acceleration planar turns. In comparison, a smoother-derived aspect angle

estimate based on the corresponding mean smoother acceleration estimate of 64.4(true) -

15(error):50 ft/sec2 would be in error by only about 6 degrees. (From the equation in

Fig. 5.24, for a lateral acceleration estimate of 50 ft/sec2 in a level, planar turn, we obtain a

5-56



roll angle of arctan(50/32.2) = 57.38 deg, versus the figure of arctan(64.4/32.2) = 63.43 deg

for the actual two-g lateral acceleration.)

5.6.3 Recognition Algorithm Performance. Typical generalized ambiguity func-

tion (GAF) outputs obtained in this research are shown in Figs. 5.27 and 5.28. The dotted

vertical lines on each figure indicate parameter (target) interpolation values for which like-

lihood functions were defined, and spline curve fits connect the mean function values to

provide the curves shown. Relevant target trajectory parameters are shown in each figure.

As in Chapter IV, the nominal sensor-to-target range is 100,000 feet.

Note in each set of generalized ambiguity functions that the Independent Look (IL)

algorithm defines the upper bound on performance (worst), and the Perfect Knowledge of

Aspect (PKA) algorithm defines the lower bound (best, but unattainable in practice). The

Fixed Bound (FB) algorithms provide significantly improved separation from the IL result,

but the algorithms which fuse filter/smoother-provided observed kinematic information

provide separation equal to or better than that of the FB algorithm in each of these

cases. Note that the fixed bound extent is increased in Fig. 5.28 to allow the algorithm to

follow the higher turn rate of this scenario. In general, with good kinematic estimates of

aspect angle state, the matching algorithm performance improves as the level of kinematic

restriction increases. Thus, the order of improving performance is expected to be IL, FB,

2-D Warp, 1-D Warp, L&P, and PKA.

Observe the highly nonlinear shape of the GAFs in Fig. 5.28 (and of the PKA GAF

in Fig. 5.27). Our results have shown that interactions between the HRR radar sweep-

to-sweep comparison metric and the changes in the parameter space due to the morphing

process can create apparently anomalous results - e.g., cases where the measurements from

an F-4 were closer in Mahalanobis metric sense to sweeps from the MIG than they were

to sweeps yielded by an interpolated target only 25% removed from the F-4. These cases

resulted from the relative motion of scatterers during the morphing process, and were

found to be physically reasonable after investigation. Modified morphing rules can resolve

these anomalies if desired - transitions in parameter space "between" two target parameter
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Figure 5.27. Generalized Ambiguity Function for Case 1. Mahalanobis metric, 6 dBsm
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sets or locations can be made along any number of paths to yield any number of different

generalized ambiguity function shapes.

Although not shown here, the moments of the distributions about the mean values

giving the GAF are small (e.g., standard deviations of 3-4 units). Thus, the parent target

classes axe readily separable in the feature space (simulated HRR radar) and metric (Ma-

halanobis) used here with any of the algorithms shown - the intent here is to show better

separation with fusion of motion information. This effect is particularly noticeable for

pseudo-targets close to the parent (F-4) which provides the measurements. In this region,

the FB algorithm provides little improvement over an IL algorithm.

In fact, as discussed in Sect. 5.3.5, considerable effort was required in this research

to define target models, trajectories, and noise levels such that any algorithm would fail

to indicate the correct target. For any pair of targets, trajectory, and kinematic/signature

noise realization, failure of an algorithm is defined as the algorithm indicating a higher

likelihood (of generating the observed signatures) for an incorrect target model than for

the correct (unknown a priori) target model. The scenario that ultimately provided the

desired stressing performance was a combination of a trajectory like that in Figs. 4.1

and 5.27 with scatterer-augmented targets and high noise (9 dBsm std. dev.), producing

signatures like those in Figs. 5.17 through 5.19. Fig. 5.29 expresses the results of this

scenario in classical terms of percent correct recognition, in a format similar to that used

for the generalized ambiguity function curves. Note that the PKA algorithm provided

100% correct recognition in every case, and so is not shown explicitly.

Fig. 5.29 shows the percentage of correct recognition for the six algorithms of interest,

defined for target parameter (morph) values of 0.04 to 0.25, where morph value 0.0 (the true

target) is the scatterer-augmented MIG-21, and morph value 1.0 is the scatterer-augmented

and down-scaled SU-22. Clearly, for pseudo-targets at small morph fractions, with one

exception, the sequence comparison techniques out-perform the Independent Look (IL)

algorithm. The "optimum" Larson and Peschon technique does particularly well, because

its explicit aspect angle transition likelihoods do the best job, relative to other algorithms,

of restricting it from finding an improperly high likelihood match on an incorrect model.
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Fig. 5.30 shows the generalized ambiguity functions corresponding to Fig. 5.29. The

increased ambiguity is evident in the much more closely grouped generalized ambiguity

function values for this case.

Since the generalized ambiguity function plots shown thus far have placed the true

target or parameter set on the left boundary, they are ill-defined to demonstrate the curva-

ture around that parameter point which wc associated with the Cramdr-Rao lower bound

(CRLB) in Sect.2.7. Accordingly, the same set of targets and algorithms was used in a

Monte Carlo set for which the "12% Morph" is the true target, or origin of measurements.

The generalized ambiguity function plot resulting from this case is shown in Fig. 5.31.

Note that the increase in curvature around the true target location is clearly evident as

we proceed from the Independent Look algorithm to the Perfect Knowledge of Aspect al-

gorithm. This increased curvature implies progressively lower Cramdr-Rao bounds on the

parameter estimates for the respective recognition algorithms, bounded by that for the

PKA algorithm, which is unattainable in practice.

Figure 5.32 demonstrates that the high ambiguity evidenced in the previous case was

in large part a function of trajectory or aspect angle, since that scenario caused the target

scatterers to be highly "concentrated" in range. In Fig. 5.32, we have used the same,

scatterer-augmented target set with a trajectory in which the sensor-to-target vector is

essentially along the target longitudinal axis, and the scatterers are separated in range.

The target signatures are now sufficiently distinct from one another that the percentage of

correct recognition is again 100% for all algorithms (therefore, no "percent correct" plot

is given), and the generalized ambiguity functions show much higher variation from left to

right.

In Figure 5.33, we return to a stressing trajectory similar to that of Fig. 5.30, but

with a non-planar turn and models that are fundamentally more distinct in structure -

a YAK-28 and a B-737 scaled to the approximate size of the YAK (this B-737 model

is comparable in many respects to a small business class jet). For the morph fractions

investigated, we again see the usual trends for reduction in ambiguity. The targets are

again sufficiently distinct that the percentage of correct recognition is 100% in each case,

and no plot of those results is required.
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Figure 5.30. Generalized Ambiguity Function for Case 3. Mahalanobis metric, 9 dBsm
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In Figures 5.34 and 5.35, we return to a case in which the origin targets are sufficiently

ambiguous to cause frequent incorrect identifications with the Independent Look algorithm.

In this scenario, the origin or "endpoint" targets are an F-4 with added scatterers, with and

without 4 x 2000 lb. bombs (two bombs under each wing), respectively. The trajectory

is that of Fig. 5.33. As Fig. 5.35 graphically illustrates, this case is extremely ambiguous.

Unique among cases examined in this research, these targets were so ambiguous that

even perfect knowledge of origin aspect angle was insufficient to guarantee 100% correct

identification, as shown in Fig. 5.34.

The classical sequence comparison or dynamic time warping-based techniques in gen-

eral have not performed as well as Larson and Peschon algorithms, and their performance

was particularly poor in this last, most stressing case. A detailed review of results shows

clearly that this fact is largely due to a convenient artificiality in this test which real-

world data may not reflect. Specifically, the measurement values in these tests are drawn

from discrete locations, generally separated by two or more aspect angle "cells", or ap-

proximately 1.5 degrees. In defining an optimum low-cost path, the classical sequence

comparison-based techniques used here are forced to define a contiguous path across the

aspect angle space - i.e., measured signatures must in general be matched to library values

perhaps considerably different from their origin locations, even on the correct model.

This factor tends to prevent the classical sequence comparison algorithms from find-

ing as low an association cost on the true (unknown a priori) model as do other algorithms.

With the likelihood value variations induced by noise, then, an incorrect model occasion-

ally provides a higher likelihood than the true model, causing the classical algorithm to

fail. This is somewhat more true in the case of the two-dimensional sequence compari-

son algorithm, which is allowed to find rather higher likelihood (lower cost) matches on

incorrect models, while the match on the correct model tends to be the same as for the

one-dimensional algorithm. The nature of the Larson and Peschon approach, on the other

hand, allows it to find high likelihood (low cost) matches on the true model and, due to

its explicit kinematic restrictions, constrains it to lower likelihood (higher cost) matches

on the incorrect model.
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This effect can be mitigated by providing for continuity constraints which allow the

classical sequence comparison algorithms to "skip" aspect angle cells with poor matching

likelihoods, or by basing the output likelihood on the "best" match for each signature

along the contiguous path (the latter choice is used in the previous results). Recall that,

in a generic sense, the Larson and Peschon-based algorithms are classical sequence com-

parison algorithms that skip as many library cells as required to match n observations to

n library cells. An essential factor to remember, however, is that allowing any dynamic

progranming algorithm to "skip" states brings an immediate increase in dimensionality

and computational cost. Note in Fig. 3.8 that, for one-dimensional sequence comparison

with the continuity constraints shown, a given library cell-measurement association has at

most two predecessors - the two-dimensional case has at most six predecessors. Larson

and Peschon-based algorithms are not so limited.

In any case, however, real-world signatures do not arise exclusively from one aspect

angle state location, but rather are the "blurred" result of observations over small con-

tiguous extents of aspect angle. It is expected that this blurring would tend to reduce the

performance differential between Larson and Peschon-type and classical sequence compar-

ison algorithms. Consider that dynamic time warping works in speech processing because

(1) the "feature observables" extracted from speech are reasonably continuous, (2) they can

be extracted with relatively little noise, (3) suitable metrics exist to distinguish differeinces

between their realizations, and (4) the feature observable functions can be discretized or

partitioned over time at intervals which preserve "closeness" in the chosen metric sense

between adjacent elements in the partitioned functions. The ease with which classical

sequence comparison can be employed will depend upon these factors as well, and more.

We must keep in mind that the nature and behavior of feature observables in multi-

sensor fusion vary widely with each sensor and its phenomenology. Relative performance

of any one algorithm in different feature spaces is difficult to predict. We may, for example,

encounter a signature or feature space situation like that hypothesized in Sect. 3.6.6, in

which Larson and Peschon algorithms skip highly unlikely aspect angle state locations to

find a low cost match on a target model that is generally unlikely to have produced the
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observed measurements. In that scenario, a Larson and Peschon-type algorithm might

perform poorly.

In at least one test set using the slide distance metric, it appears that an effect of

this type was observed - basically, for the scenario of Fig. 5.32, the test was repeated

using the slide distance metric and noise of 5 dBsm standard deviation. The Independent

Look and Fixed Bound algorithms exhibited 50% correct recognition for all morphs, or

no better than a coin toss, while the 1-D and 2-D Warp algorithms exhibited 60% correct

recognition or better consistently for the 67% and 75% morphs. Since it explicitly includes

transition likelihoods, the Larson and Peschon algorithm was not used in this test per se,

but a version of the Fixed Bound algorithm "biased" in the direction of motion did no

better than the standard Fixed Bound algorithm. It appears that the ability to skip cells

gave even Larson and Peschon-type dynamic programming algorithms the ability to find

very low cost matches for this metric consistently on the wrong targets, while the l-D and

2-D Warp algorithms found somewhat higher costs. For reasons noted later in this chapter,

however, this observation should not be taken as representative of the performance of the

slide distance metric in general.

The only statement that can be made with certainty is that restricting signature

associations according to a priori information (kinematic or otherwise), if done properly

(so as not to preclude associations required by likely behavior of the truth model), should

improve recognizer performance, where incorrect recognitions are caused by unlikely asso-

ciations on the wrong target model. Again, the expected order of improving performance

corresponds to the order of increasing restriction for observed kinematics: IL, FB, 2-D

Warp, 1-D Warp, L&P, and PKA. The next section illustrates how these algorithms and

their kinematic restrictions lead to lower likelihoods for incorrect associations.

5.6.4 Effects of Considering Likely Kinematics: Restricting Transitions. In

Sect. 2.6.2, we proposed that restricting target recognition algorithms to kinematically-

feasible subsets of a matching function domain would be expected to decrease ambiguity.

Fig. 5.36 shows why progressive domain restriction provides better separation when mea-

surements from one target class are matched to the library for another (i.e., wrong) class.
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This figure represents a region of solid angle in target aspect defined by the union of six

"windows" or aspect angle bounds for any one measurement. The "brackets" along the

right side of this diagram show how the windows for successive measurement events may

in general overlap (window two, or "W2", for example, extends along-track from aspect

angle cell row 3 to row 15). The maximum likelihood aspect angle associations, or pose

estimates identified by several algorithms over this angular extent for six measurements

are shown - the true aspect angle is shown as well.

Note the erratic aspect sequence selected by the IL processor. Recall that the IL

processor is allowed to find the best signature-to-library match (i.e., pose estimate) within

the appropriate window - regardless of past (or future) associations. This erratic sequence

therefore gives a lower matching cost (higher signature likelihood) than those found by

algorithms which restrict transitions according to likely or observed kinematics. Next, note

the still rather unlikely sequence selected by the FB algorithm. This algorithm requires

successive pose estimates to lie within the bound limit, but does not explicitly penalize the

matching cost for transitions that conflict with a priori expectations.

The DTW and L&P-based algorithms select more likely (linear) aspect angle paths,

and their predilection to follow kinematically-reasonable paths forces a higher matching

cost (lower likelihood) than given by IL or even FB algorithms for this incorrect model-

to-target association. In contrast, when measurements were matched to their true target

class of origin, the different algorithms are much more likely to associate with the same

(true) aspect angle region, although the IL algorithm may still give unlikely pose estimate

transitions, as we will shortly see.

Closing our discussion of Fig. 5.36, consider the effect of using a pose estimate ex-

tracted from this figure to drive the dynamics model in a kinematic/aspect filter of the

kind described in Chapter IV. If some signature sequence-matching algorithm was able

to provide a (zero error) pose estimate corresponding to points T1 through T6, then the

kinematic/aspect filter associated with this target model would "fly" properly, exhibit-

ing reasonable residuals, and so on. On the other hand, what will happen if the fiter is

provided with the "Larson and Peschon" pose estimate? Now it happens that, for the

trajectory shown here (that of Fig. 5.27 et al.), error in the along-track pose estimate
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corresponds closely to error in angle of attack, and error in the cross-track pose estimate

corresponds closely to error in roll angle. Thus, we would expect on the order of two to

3.4 degrees error in the angle of attack estimate, and seven degrees error in the roll angle

estimate. This error would contribute to "conflict" between states in the kinematic/aspect

filter, which would be revealed by higher residual error for the incorrect model than for

the correct model (although, for this case, perhaps not as large a difference as those shown

in Chapter IV).

The reader may observe that use of the pose estimate sequence from the Independent

Look processor in Fig. 5.36 could have an even more severe effect on the operation of a

kinematic/aspect fiter, even though this sequence is perhaps closer in the mean to the true

aspect angle sequence. However, even on the correct (unknown a priori) target model,

the Independent Look pose estimate sequence can show wild changes. This behavior is

observed in Fig. 5.37, showing results from the first run made for Fig. 5.29 - a high noise,

high ambiguity case. Arrows to show transitions for the dynamic programming algorithms

are not shown, since these associations are all basically in the same area. Note, however,

that the pose estimate sequence for the Fixed Bound algorithm still does not conform very

well to the true sequence - the Larson and Peschon algorithm follows it exactly, and the

classical sequence comparison algorithms differ only in minor ways. Clearly, it is better to

extract this pose estimate after "smoothing" by sequence comparison methods. We will

return to this subject in the following chapter.

In general, the improvement from kinematic information fusion increases with the

mean aspect angle rate or g level of the target's turn. As turn rate increases, physics

limits the number of possible aspect angle states xa (and therefore state sequences Xpa.),

and we can limit the remaining matching domain even more severely to (fewer) sequences

of expected length and direction. For the FB algorithm (with a fixed sampling rate),

however, we must open the aspect angle bounds to give it any chance of tracking the

nominal aspect rate on the true target. This increases dimensionality and gives it a greater

chance of finding an improperly high likelihood match on an incorrect target model. Other

approaches for identifying infeasible aspect angle sequences may mitigate this problem,

but may not effectively use the information available in observed kinematics.
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Figure 5.37. ML Aspect Angle Estimates on the Correct Target. Note: The Larson
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Conversely, as turn rate decreases, the small mean aspect angle rate available to

motion fusion algorithms tends to produce the same results as the FB algorithm, which

assumes no mean rate, and can use small bounds when a small mean rate exits. For a zero-

mean turn rate estimate, FB algorithms provide an effective approach - this is simply the

limiting case of the L&P algorithm for a zero-mean, uniform p(x+l,n xI , Zk , ,). For

an aspect angle rate known to be zero, conventional decision theoretic recognition is most

effective - this is in turn the limiting case of the FB algorithm for a bound of zero degrees.

This does not imply, however, that the decision theoretic classifier should be able to pick

best successive looks from different aspect angles on any one target model - rather that

the "best" maximum likelihood estimate of class and pose will be provided by the single

aspect angle cell on one target model that yields the highest joint likelihood of originating

the observed signature sequence. As motivated in Sects. 3.5 and 3.6.6, however, making a

class membership decision using this maximum likelihood value for one aspect angle may

be suboptimal compared to a maximum a posteriori estimate considering all a priori likely

(but constant over the measurement period) aspect angle cells for each class.

5.6.5 Miscellaneous Issues. Effects from discretization in the aspect angle space

were noticed in these tests when measurement signatures were not drawn from the library

cell locations, but rather from locations in between library cell values. Although signa-

tures preserve significant characteristics over small aspect angle changes, the Mahalanobis

metric used in these tests was sensitive even to small signature changes. The primary

result of this effect was a reduction in the effectiveness of sequence comparison algorithms

in general and the 1-D classical algorithm in particular, since these were restricted from

finding an adequately high likelihood match on the true target model - even on the correct

model, poor discretization will drive the the Independent Look algorithm to look far afield

for a minimum cost match. Tuning the sequence matching algorithms to loosen transition

restrictions improved their ability to find low cost matches on the true model, but, as

discussed in Sect. 3.7.2, this reduces the effectiveness of kinematic restrictions for incorrect

matches. In any case, the Larson and Peschon-type algorithm retained clear superiority

over the others. We should expect reduction of this discretizatiun effcct with finer dis-
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cretization, a less sensitive metric, or possibly, a different feature observable space (i.e., a

space which exhibits less variation as a function of aspect angle).

In addition to the Mahalanobis metric, the General Dynamics slide distance metric

was also applied in these scenarios, but was found to be ineffective in this simulated feature

space for showing differences between the various algorithms. With few exceptions (one of

which was noted above) these algorithms seemed to do equally well or equally poorly with

the slide distance metric. This is presumably a function of tuning, since the GD algorithm

is signature-library specific, as discussed in Chapter II, and the slide distance algorithm

was not tuned for these artificial signatures. Note that the tests discussed 3ect. 5.4

were conducted under entirely different rules from those discussed in this section - longer

sequences, more differences between targets, no noise, and so on. In any case, it should be

clear that properly limiting the domain of any signature matching or likelihood function in

accordance with observed kinematics, using any signature-to-signature metric, should not

degrade correct recognition events, and may reduce incorrect recognitions significantly.

Finally, the reader should consider the value of analyzing maximum likelihood tar-

get recognition systems with generalized ambiguity functions - allowing evaluation of the

"curvature" of the likelihood function ar',und its design point. While separation at targets

of interest (i.e., points of interest in pwia-neter space) is the key design criterion, high

curvature around the design point of each likelihood function should be of high secondary

interest. Recall from Sect. 2.7 that this curvature ectly related t0 the Cram6r-Rao

lower bound (CRLB) for the estimator used to dev. ,. GAF [154]: practical evaluation

of this bound using our approach requires one to genur'.te target "morphs" or interpola-

tions arbitrarily close to the design parameter point Q/t, and evaluate the behavior of the

GAF in this region.

As implied by the behavior of the generalized ambiguity functions in the figures shown

(particularly Fig. 5.31), the limiting value of the CRLB for these estimators is evidently

given by the CRLB to be found in this fashion for the PKA algorithm (i.e., joint maximum

likelihood for known aspect angle over time). In any case, the figures make it clear that

the separability of any two target classes depends on much more than behavior 9f the GAF

around the true target parameter point. Thus, the concept of a CRLB in this construct
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is perhaps not of greatest interest where we simply wish to identify a set of measurements

as belonging to one of several a priori known points in some parameter space. Rather,

the CRLB may be most useful where we wish to perform classical parameter estimation:

for example, quantifying the extent to which we are able to learn the optimum location

in some finite-dimensional, model-based target parameter space to represent a previonsly

unclassified real target, known only by tracking data and signature sequences. We will

return to this subject in Chapter VI.

5.7 Summary

In conclusion, the results of this section show that "motion warping" - the application

of dynamic programming sequence comparison in moving object recognition - is a highly

effective concept for multisensor fusion. This approach exploits the joint likelihood of

signatures, conditioned on observed kinematics, to reduce ambiguity in recognition.

The "full" or optimal Larson and Peschon and classical sequence comparison ap-

proaches demonstrated here represent significant new additions to the previous research of

Le Chevalier [136] and Mieras [164, 165]. This research shows that all of these algorithms

are simply members in a large family of forward dynamic programming-based sequence

comparison techniques. The final answer as to which approach is better is expected to be

a function of the particular application. Classical performance tests, generalized ambiguity

function analysis and consideration of computational requirements can be used to select

the best technique for a particular object class, sensor, and so on.

The results given here indicate that applying the full Larson and Peschon algorithm

provides more accurate, less ambiguous recognition than either suboptimal "fixed bound"

Larson and Peschon-type techniques (similar to those of Le Chevalier and Mieras) or

classical sequence comparison approaches. Under demanding, ambiguous target signature

conditions, the Larson and Peschon algorithm best exploits "a priori' information on target

motion. This algorithm demonstrated the ability to make correct target recognitions nearly

100% of the time, when correct recognition by an independent look processor fell to 80% or

less. Suboptimal Larson and Peschon-type techniques and classical sequence comparison
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approaches generally provided performance intermediate between that of "independent

look" and optimal Larson and Peschon methods.

Moreover, the results of this chapter have demonstrated a new approach for estab-

lishing bounds on the performance of recognition algorithms. Treating dynamic object

recognition as a problem in parameter estimation, and conducting performance analysis

with generalized ambiguity functions allows definition of Cr-nm6r-Rao lower bounds for the

covariance of "parameter estimates" by the recognizer.

In sum, these results provide significant new directions for the development and

analysis of dynamic object and tactical target recognition. They can be used alone or in

combination with other methods proposed in this dissertation to exploit the joint likelihood

or syntax of observable events. The following chapter will discuss directions in which further

development might proceed.
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VI. Further Developments Exploiting Joint Likelihood in Object Recognition

6.1 Introduction

The author believes that this work and prior contributions by Therrien [211], Le

Chevalier et al. [136, 135] and Mieras et at. [164, 165] have only begun to assess the poten-

tial inherent in syntactic approaches to dynamic object recognition and other multisensor

fusion applications - in particular, tactical target recognition. The author has shown that

syntactic methods have great potential for identifying those target parameter sets with

highest joint likelihood of generating observed kinematic and sensor signature events. The

purpose of this chapter is to discuss particular directions and tasks for extensions to this

research.

The two primary directions of this research - Steps One and Two as proposed in

the introduction to Chapter III - were the use of (1) conventional multiple model pa-

rameter estimators with kinematic/aspect-angle trackers to assess the joint likelihood of

observed kinematics, conditioned on feature observable measurements, and (2) dynamic

programming-based sequence comparison techniques to assess the joint likelihood of mea-

sured feature observables, conditioned on kinematic measurements. The most important

extension required to this research is to investigate Step Three - a new estimator structure

which combines the two. This is the principal topic of the first section below.

6.2 Sequence Comparison Methods for Single Object Identification

In this section, we concern ourselves with the problem of tracking and classifying a

single dynamic object, i.e., the case in which all measurements are unambiguously asso-

ciated with one origin object. As discussed above and in Sect. 3.9, great promise exists

for object recognition algorithms combining (1) classical sequence comparison and/or Lar-

son and Peschon approaches for sequential signature processing with (2) a Kendrick-type

kinematic/aspect-angle tracker or even a standard kinematic tracker. Several possibilities

are suggested in the following subsections.

6.2.1 A New Class of Estimator for Object Recognition and Tracking. Recall from

Sect. 3.6 that optimal use of the Larson and Peschon equations requires explicit knowledge
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of the a priori likelihood of transitions on the aspect angle space, or p(x,, I k Zd, M ).

For aircraft targets, this information requires reasonable estimates of the target acceleration

states. Conventional kinematic trackers cannot provide this information in real time, and

their outputs require some form of smoothing to derive reasonable aspect angle estimates.

Kinematic/aspect-angle trackers, on the other hand, can provide reasonable acceleration

estimates in real time.

Conversely, the kinematic/aspect tracker requires target pose estimates, which yield

the aspect angle pseudo-measurement. A Larson and Peschon-type algorithm provides this

pose estimate as */,.,, i.e., the latest or k-th aspect angle state in the Larson and Peschon

(LP)-derived maximum likelihood sequence of aspect angle states k", for object class

Wi.

The evident next step, then, is to link a Larson and Peschon-type estimator and a

Kendrick/Maybeck/Reid-type estimator, so that each provides the information required

by the other. The result is believed to constitute a new form of estimator. This esti-

mator allows one to process (1) information which does not conform to rules appropriate

for linear or quasi-linear estimators, like radar signatures from an aspect angle space, in

conjunction with (2) information that does conform to those rules, like range and pointing

angle measurements from an object moving in physical space. An equivalent, completely

linear or quasi-linear estimator may be impossible, and a possibly feasible Larson and

Peschon structure to process both kinematic and feature measurements would have very

high dimensionality indeed. The proposed Larson and Peschon / linear filter structure

would seem to be a feasible and efficient way to process all available information.

Time constraints in this research, and the disjoint structure of simulations built

for Steps (1) and (2) did not permit demonstration of the estimator approach for Step

(3). When demonstrated, the resulting algorithm will allow one to combine explicitly

(1) the likelihoods of observed kinematics and kinematics-related properties (e.g., mass),

conditioned on observed signatures, with (2) the likelihoods of observed signatures, condi-

tioned on observed kinematics, for each candidate object class. This will be a true joint

likelihood object recognition algorithm using all available information, and conforming to

well-understood classical parameter estimation practice.
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Through this approach, linear or quasi-linear assumptions and requirements com-

mon to conventional parameter estimation could be relaxed considerably where necessary.

Inherently, however, like conventional parameter estimation approaches, a recognizer of

this form will consist of a set of estimators, one for each expected or otherwise desired

parameter set, combined in a Bayesian multiple model estimator structure - a multiple

model adaptive estimator structure, if the estimators are designed to alter their parameters

according to observed results.

6.2.2 Other Approaches for Object Recognition with Sensor Signature Sequences.

The primary thrusts of this research - sequence comparison with dynamic programming,

residual analysis using kinematic/aspect state estimators, and the combination of the two

proposed in the previous sibsection, are by no means the only approach for combining

this information. A completely different approach, for example, would be to treat the

pose estimate history (Sect. 2.2.1) and the kinematically-estimated aspect angle history

(Sect. 2.3.3.1) as separate tracks on the two-dimensional surfaces of the hypothetical aspect

angle spheres for each of several candidate objects. Then, classical track-to-track associa-

tion schemes [33, 10, 218] could be used to determine which track-to-track association was

best, implying a correct choice of object class. For objects and feature spaces where pose

estimates are reasonably well-behaved (which is generally not the case with HRR radar),

and perhaps in other cases, this approach might be workable, and have low computation

requirements.

6.2.3 Sequence Comparison for A Priori-Likely Sequences. The use of dynamic

time warping for word detect;un in continuous speech [176] suggests a method for detecting

aircraft target roll maneuvers at the time of their occurrence, i.e., prior to the development

of normal load acceleration and kinematically-observable events. Basically, if we are track-

ing an aircraft, and have a reasonable idea of its class and current aspect angle, we can

construct sequences of likely sensor signatures corresponding to particular roll maneuvers.

These sequences will thpn be continuously compared with the observed signatures - the

onset of a roll maneuver will be marked by a sudden "match" between the incoming sig-

nature sequence and one of the constructed sequences. In effect, this is a form of multiple
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model estimator. Recognition of such a roll event would cue the kinematic tracker for

changing conditions.

A development of the "fixed bound" Larson and Peschon or Le Chevalier-type syn-

tactic algorithms [136] (i.e., requiring no a priori information other than bounds) would

also find use in this application. Applying such an algorithm to sequences of observations

from the target would, for a stationary aspect angle, indicate a sequence of maximum

likelihood associations in approximately the same aspect angle area In a turn event, the

sequence of associations would proceed off in a direction indicative of a turn - the change

in associated aspect angle would be derived readily from the algorithm. The path direction

should not be expected to be as accurate as would be the case if a priori information were

available from kinematics, but it may be accurate enough to cue the kinematic tracker.

Extensions of this concept would use dynamic programming-based methods or other

sequence comparison techniques for identifying any object for which particular feature

sequences can be predicted or expected, in the absence of an ability tG estimate the under-

lying kinematics or other state transitions directly. Some tactical targets have "canned",

operator-learned, or otherwise a priori-likely maneuvers which may generate characteris-

tic feature sequences under circuurbbances in which target kinematic state measurements

are not available, or in which observable kinematic states are not highly correlated to

the feature values. For example, particular exoatmospheric or re-entering objects have

characteristic signatures imparted by periodic or reasonably predictable behavior. Other

speech processing-related techniques have already been considered in this particular strate-

gic defense-related area, such as Therrien's use of Linear Predictive Coding (a technique

often used in speech analysis) to model target signatures [211].

6.3 Sequence Comparison Methods for Multi-Object Tracking and Data Association

Here we consider the problems of tracking and classifying multiple objects, i.e., the

case in which each measurement cannot be unambiguously associated with any one origin

object. All of the techniques and algorithms discussed in this research for exploiting

the joint likelihood of observed events and known object classes are applicable to these

problems. Some cases of particular interest are given below.
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Figure 6.1. Problem: Associating Signatures From Imaging and Radar Sensors (figure
inspired by [96])

6.3.1 Motion Warping for Observation-to-Observation Association. Classically,

the spatial resolution capabilities of radar and passive optical sensors are counterposed -

that is, radar sensors have limited angular resolution, but excellent range resolution, while

passive optical sensors have excellent angular resolution, but no range resolution (excepting

secondary methods like stadiametric range finding, based on knowledge of object class,

orientation, and angular extent in the image plane, etc.) At least one recent article [96J

notes that the problems of associating objects between imaging and radar sensors are not

completely solved.

Consider the situation described in Fig. 6.1, taken essentially form the last reference.

This situation could arise, for example, in observing three moving objects on a relatively flat

surface at long distance from a remotely-piloted vehicle equipped with low-cost imaging and

radar sensors. We wish to direct artillery fire on object (A), but are unable to determine

its range unambiguously, since the angular resolution cell of the radar encompasses the

three objects in the imaging sensor field of view, and arbitrary orientation of the objects

makes stadiametric range finding impossible.
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Using the approach applied in Chapter V, however, we can say that a total of three

possibilities exist for associating object (A) with the range signatures. If the object class

of (A) is unknown, then at least in general we can expect that (A) is a member of one class

wi of J a priori likely object classes. Each of these possibilities defines a particular object-

trajectory combination on the ground surface (which may be more or less well known),

and therefore implies a particular sequence of signatures in the image and radar domains.

The maximum likelihood association of (A) with (1), (2), or (3) and object class wj of J

classes should be the one for which the joint likelihood of observed kinematics and signature

sequences (in image and radar domains) is greatest. Thus, the approaches defined in this

research may provide solutions for problems now c -nsidered to be unsolvable.

An extension to this fusion process might provide for feedback to improve the sensor

outputs themselves - for example, by providing a "best" choice for a model and time-

varying orientation to be used in a model-based segmentation algorithm [27, 29].

6.3.2 Joint Likelihood in Observation-to-Track Assignment. As in the preceding

problem, one could augment the decision process for observation-to-track assignment with

"motion warping" and related means for exploiting the joint likelihood of kinematic mea-

surements and sensor signatures. This development should provide a tangible improvement

over state-of-the-art approaches as discussed in Sect. 2.3.3. Inherently, the maintenance

of a track history gives a departure point for likely kinematics, which imply likely fea-

ture observations, and so on. At least, this research should persuade researchers to treat

"nonkinernatic" variables and measurements as interdependent with "kinematic" ones, and

provide options for exploring their relationships in multisensor fusion.

6.4 Mathematical Issues in Multisensor Fusion for Recognition

In an early article on pattern recognition, Ho and Agrawala [1t.8] observed that many

concepts well understood in the context of state and parameter estimation were applicable

in pattern recognition. This remains true, and in this section we will discuss particular

directions that evidently remain to be explored regarding the application of state and

parameter estimation concepts to dynamic object recognition.
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6.4.1 Parameter Estimation and Object Recognition. In general, current object

recognition efforts tend to focus on assigning sets of measurements from an unknown object

to one element in a finite set of a priori known object classes. It is believed, however, that

a potentially fruitful area of research would be to consider continuous object parameter

spaces, and the use of measurements to define points in these parameter spaces with

maximum likelihood of having generated the measurements. As discussed in Sect. 3.11,

real object parameter spaces are infinite-dimensional, but we are forced to model them in

finite-dimensional spaces, choosing levels of model fidelity that match real objects to within

some distance in some norm or distance measure. Using the mathematics of functional

analysis [1701, it should be possible to pose and answer many elegant questions regarding

our ability to model or identify real objects using finite-dimensional models.

The practical application of this research is that it allows us to consider object

identification when the unknown object class is not one of those well characterized a pri-

ori. We may obtain measurements of a completely new object, and be able to make

conjectures about its parameter set in our finite-dimensional model space, based upon

well-characterized points in the parameter space which correspond to known objects. This

is no more than a proposal to use well-known parameter estimation concepts [154] for

estimating or learning object parameters during recognition.

As noted in Sect. 2.7, the ability to compute an ambiguity function gives us the

ability to define a Cram~r-Rao lower bound on the parameter estimate error covariance

matrix. For a set of parameters "learned" as proposed in the previous paragraph, this

lower bound gives us a measure of confidence regarding the quality of our estimate. Even

where we do not desire to learn parameters, this covariance bound should give us, for

two arbitrary loci of points in state/parameter space corresponding to well-characterized

object classes engaged in some particular maneuver, an understanding of how well we can

expect to discriminate between them with our classifier. Due to the limited number of

observations likely in a tactical scenario, this will require not only a well-shaped ambiguity

function, but also likelihood functions which have probability density functions closely held

around the mean, or ambiguity function, value.
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6.4.2 The Motion Warping Process as a Nonlinear Functional. As discussed

in App. B, a nonparametric linear classifier is a linear functional [170] - that is, a linear

function, operating on a vector (feature) space over a scalar field (the real numbers, in

this case), the output of which is an element from the scalar field (a distance). The

mathematical structure of linear functionals prescribes the existence of a vector space

dual to the feature space, in terms of which dual space the parameters of the functional

can be stated - specifically, the equation of the hyperplane corresponding to the linear

classifier is described by a scalar and a point in the dual space, which is equivalent to

the first n dimensions in the n + 1-dimensional space called the weight space by Tou and

Gonzalez [212].

Similarly, the motion warping processes and other joint likelihood methods described

in this research are nonlinear functionals - nonlinear functions, operating on a Cartesian

product space of aspect angles, features, and kinematic measurements, to produce a scalar

output (likelihood, or perhaps simply warping path distance). Many of these algorithms are

subject to further classification as functionals: for example, for the feature observable-to-

feature observable (e.g., range sweep to range sweep) Mahalanobis metric employed in this

research (which treats the range sweeps as elements in a finite-dimensional Hilbert space),

it can readily be shown that motion warping is a bounded nonlinear functional [170:344].

These observations may provide a path for further theoretical analysis of the concepts

proposed in this research.

6.4.3 Sequence Comparison for Multiresolution Analysis. Recent efforts have

been directed toward the use of wavelets, optimal estimators, and other tools for anal-

ysis of multiresolution or multiscale processes [150, 17, 541. In this regard, it should be

noted that the sequence comparison techniques discussed in this dissertation inherently

have potential for multiresolution applications. For example, one can conduct sequence

comparison processes for a range of "fineness" or spatial discretization levels. The results

of these comparisons may reveal the presence of grammatical or syntactic structures rang-

ing from coarse to fine in the space over which the comparisons are conducted. Iterative

algorithms may provide for progressively finer investigation of the likelihood that particu-
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lar spaces generated particular sequences or subsequences, ceasing investigation when finer

resolution appears pointless.

6.5 Alternative Approaches for Sequence Comparison.

The research detailed here has focused on forward dynamic programming-based tech-

niques for sequence comparison, but these are not the only tools for this task - there are

many methods for comparing sequences. The principal competitor to dynamic time warp-

ing in the speech recognition problem is the hidden Markov model (HMM). In turn, the

HMM can be considered as a form of stochastic automaton [176:309], which, like dynamic

programming-based sequence comparison, is a key tool in general syntactic pattern recog-

nition, as discussed in Chapter II. Another alternative class of approaches is offered by

neural networks. The author chose not to investigate these alternatives, primarily due

to what he perceives as disadvantages to them, as alluded to in Chapter I. Subsequent

to the start of this research, some aspects of these approaches have been investigated at

AFIT [128, 68, 83], as noted in Chapter H, and independent effort using these methods

has been undertaken elsewhere [81, 199].

A key issue to be addressed by researchers applying HMM's, neural nets, and other

"trained" algorithms to this problem is how to train the algorithms for a variety of expected

scenarios without introducing ambiguity into the recognition process. There may be a need

for research to define the tradeoffs between maintaining large libraries from which sequences

can be constructed at will (as in this research), versus maintaining large numbers of HMM's

and/or neural nets, each defined for a particular set of events.

6.6 Miscellaneous Issues and Extensions To This Research

Aside from the further algorithm developments proposed above, a number of perhaps

more mundane but critical remaining issues can be explored using the basic algorithms

employed for this research. These include, but are not limited to, the following:

6.6.1 Feature Space and Distance Metric Choices. This research has focused

on the use of "motion warping" or dynamic programming-based sequence comparison for
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moving object recognition using a feature space of high range resolution radar sweeps. The

method, however, should be applicable to any of the global descriptor features, as generated

by imaging or other sensors, discussed in App. B. A particularly powerful approach would

appear to be that of making syntactic or motion warping object recognition based on

simultaneous analysis of feature observables from multiple domains - infrared, visual light,

and ultraviolet spectrum or image-extracted features, narrowband and wideband (high-

range resolution) radar, and so on. The objective here would be to exploit the concept

of joint likelihood further by making use of the processes in two or more feature domains

(ideally, stochastically independent ones) to reduce the likelihood further that an incorrect

object class could generate observed feature sequences.

6.6.2 Application to Other Classes of Objects. The discussion in this dissertation

has been primarily oriented toward air and ground tactical targets. The principles and

analysis tools discussed here, however, should be applicable to many other object and target

classes - animate beings, ships, satellites, etc. The requirement is simply to have some

set of restrictions which couple state transitions and measurement generation according to

known rules (parameters unique to each class), combined with measurements from multiple

sources that will conflict when incorrect parameter sets are assumed.

Also, although we have spoken most often with regard to dynamic object recognition

in this effort, it should be clear that the principles behind this research also apply to the

recognition of stationary objects. Simply, if it is known that a given object is stationary

in aspect angle and/or translation with respect to the sensor, one should not match noisy

sensor signatures from that target with library models in a way that allows or requires the

models to translate and/or rotate between signatures. To do so is to invite an incorrect

recognition.

6.6.3 Path Discretization. In virtually every discussion of dynamic programming-

based processes, the discussion recognizes that continuous spaces must be discretized, but

gives no guidance as to the appropriate discretization fineness. In Sect. 5.6, we discussed

one effect of inadequate discretization observed using the RCSTooLLBox-generated feature

space and the Mahalanobis metric. The sensitivity of the dynamic programming-based
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algorithms proposed here to discretization fineness should be further evaluated. The am-

biguity function techniques discussed above provide a natural, if empirical, way to conduct

such analysis.

That is, considering likelihood function values due to feature observable matching

only, one attribute of a proper discretization level may be the absence of a difference at

the true parameter point fl, between ambiguity function values for sequence-matching

and non-sequence-matching algorithms. This means that, on the true target, there is no

cost penalty for sequence matching algorithms due to "false" pose estimate motion on the

target, like that caused when the matching process "hunts" to find the best cell from the

available discrete set which might have generated the observed measurements from the

underlying continuous space (in our case, aspect angle).

6.6.4 Alternative Kinematic/Aspect-Angle Filter Designs. The effects and pos-

sibilities noted in Chapter IV deserve to be repeated using filter models with higher fi-

delity - in particular, with parameters and aspect angle pseudo-measurements matched to

real objects and sensors of interest. This proposal is made with regard to a conventional

kinematic/aspect-angle estimator construct, i.e., one that does not explicitly predict and

compare feature observable measurements.

6.6.5 Application of the Larson and Peschon Equations in Speech Recognition and

Other Areas. In Sects. 2.4.5 and 3.8, we compared the Larson and Peschon equations

to elements from the family of classical dynamic programming-based sequence comparison

methods. We noted that the Larson and Peschon equations are, from a general perspec-

tive, simply one member of this family, distinguished from other members by very special

continuity constraints. This observation leads one to consider the possibility of apply-

ing the Larson and Peschon equations in classical sequence comparison tasks, like speech

recognition. The immediate advantage to consider, as observed in the referenced sections,

is that "Larson and Peschon"-type sequence comparison would not be penalized for length

differences between two sequences to be compared. As we have seen in Chapter V, subject

to its a priori guidance on sequence element separation, the Larson and Peschon approach

can readily match a very short sequence of n elements to the "best" n elements from a
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very long sequence of m elements (n «< m). From that result, we might desire in some

fashion to compare the "skipped" elements of the longer sequence to the nearest elements

of the shorter sequence, but at least we have a good starting point - much better than we

would be likely to achieve with classical "continuous" sequence comparison.

For other possible applications of the Larson and Peschon approach (and other as-

pects of the research presented here) with regard to ISAR radar and related areas, the

reader is referred to a previous article by Le Chevalier [137]. Note that the referenced

article is classified and in French, without translation in the origin document.

6.7 Summary.

This chapter has attempted to point the reader toward promising areas for funda-

mental research, and to list applications for the approaches and algorithms developed in

this effort. It is clear that much more can be done to apply syntactic pattern recognition

and classical parameter estimation techniques to multisensor fusion and object recognition.

Syntactic or joint likelihood approaches to object recognition should always be con-

sidered when the objects of interest obey known rules that couple behavior (state dynamics)

and appearance (measurable or observable quantities) in characteristic ways (as functions

of parameters unique to each object class). This chapter shows promising directions for ap-

plying the results of this research and other methods toward syntactic solutions to current

problems.
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VII. Summary and Conclusion

This research explored methods by which the obvious interrelationships between

target motion and sensor signatures could be exploited for recognition of dynamic objects

in general and tactical targets in particular. A wide variety of methods and directions were

taken in this effort, but all culminate in one basic result - producing likelihood functions

that exploit the joint or coupled nature of physical processes over time for known object

classes, to reduce ambiguity in deciding the most likely object class to have produced a

given sequence of measurements or observations.

This research can be understood from at least three different, yet fundamentally

equivalent perspectives. First, from a probabilistic standpoint, we have defined new ex-

pressions for the joint likelihood of observed events from known target classes, conditioned

on past measurements and a priori information for each class. Unlike conventional pattern

recognition approaches, we are specifically interested in the joint likelihood of events over

time, since we wish to consider the likelihood of physical processes implied by those events.

Ideally, these likelihoods would be used with Bayesian methods to estimate an a posteri-

ori probability of class membership for an unclassified target, conditioned on all available

information.

Second, this research can be posed as an extension to the theory and practice of

syntactic pattern recognition - that is, the class of algorithms which distinguish entities

using order or structure, commonly by representing an observed entity as a sequence of

elements over time, and assessing the likelihood that any known class could generate the

observed sequence. For known physical objects, the process of generating sequences or

sequence spaces of expected elements for each class inherently considers the joint or coupled

nature of the processes which produce the sequences. We may then apply a range of

available syntactic sequence comparison tools to associate the observed sequence with its

most likely origin class.

Lastly, this research can be considered as having defined techniques for restricting

the domains of likelihood functions used to identify known object classes, making restric-

tions according to joint or coupled aspects of behavior expected over time. Restricting
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the domain of an object class-specific likelihood function or matching function tends to

prevent that function from improperly associating itself with a sequence of measurements

that should not, all facts considered, have come from that object class. For the correct

combination of observed sequence and likelihood function, proper domain restriction will

not hinder the association process.

The results of this research are major extensions to the theory and practice of se-

quence comparison methods in dynamic object recognition, as pioneered by Therrien [211],

Le Chevalier [136] and Mieras [164, 165]. Furthermore, they strongly confirm the observa-

tions of Agrawala and Ho [108] and Daum [9:177-178] regarding the potential applicability

of state and parameter estimation techniques in object recognition.

The theoretical and practical contributions of this research are restated below from

Chapter III, and demonstrated results from Chapters IV and V are referenced to support

each claim. They include:

(1) Extension of conventional multiple model residual sequence analysis techniques and

kinematic/aspect-angle trackers to provide new methods for object and target recognition,

in particular where sensor measurements are not linearly predictable. The techniques

described in Sect. 3.4 and demonstrated in Chapter IV represent a completely new approach

to recognition of dynamic objects in general and aircraft targets in particular. The potential

effectiveness of these methods can be gauged by comparing the likelihood values for correct

and incorrect associations in Figs. 4.9 and 4.10, or the state estimates for correct and

incorrect associations in Figs. 4.5 and 4.6.

(2) Extension of the Larson and Peschon equations [133] (Sects. 2.4.4 and 3.6) to provide

new methods for dynamic object recognition using measurements from ambiguous feature

observable spaces, considering - in an optimal fashion - a priori information from kinemat-

ics and other sources as to the likelihood of transitions on the underlying aspect angle state

space. The reduced ambiguity provided by this approach over conventional "independent

look" processes is demonstrated in Figs. 5.27 through 5.35 - up to 20% improvement in

percentage of correct recognition is observed in this particular application.
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(3) Extensions of the theory and practice of classical dynamic programming-based sequence

comparison to include feature observable sequences arising from an aspect angle subspace.

The reader may compare Figs. 2.8 and 3.8 to observe this extension graphically. Results

showing reduced ambiguity for these algorithms compared to conventional approaches are

seen also in Figs. 5.27 through 5.35.

(4) Combination of the of the Larson and Peschon equations with conventional linear

estimators to provide a new form of estimator, suitable in particular for object recognition

with ambiguous feature observables, generated from dynamic subspaces that exhibit linear

behavior in some respects. This process is described in Sects. 3.9 and 6.2.1.

(5) Through contributions (1) through (4) and application of Bayes' Rule, several new

approaches for multisensor fusion to obtain a posteriori probabilities of object class mem-

bership, conditioned jointly on kinematic and "nonkinematic" or feature observable infor-

mation and a priori information on each known object class. In particular, Eqn. (3.18),

a development of the Larson and Peschon equations, is a completely new expression for a

posteriori probability of target class, allowing the user to fuse ambiguous sensor signatures

and kinematic information in an optimal fashion for object recognition. Other relevant ex-

pressions are Eqns. (3.2) and (3.21). These equations can be readily used with likelihood

values generated as shown in Chapter IV and V.

(6) Identification of a new method for evaluating object recognition algorithms - the gen-

eralized ambiguity function. This approach provides a useful alternative to the conven-

tional performance approach of evaluating probabilities of correct and incorrect recognition.

Figs. 5.27 through 5.35 include several examples of performance evaluation by generalized

ambiguity functions.

(7) Extension of classical parameter space concepts into the field of object and target

recognition. In particular, the discussion of Sect. 3.11.3 and the target model generation

procedures in Sect. 5.3, combined with later results in Chapter V, motivate the need to

consider objects as discrete sets of parameters in continuous/discrete parameter spaces,

and demonstrate new methods for allowing that consideration.
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(8) Through contributions (6) and (7), identification of a new and practical approach for

obtaining a Cramdr-Rao lower bound for dynamic object and target recognition algorithms.

The potential in this approach can be noted by comparing the discussion in Sects. 2.7

and 3.11.3 with the generalized ambiguity function plot of Fig. 5.31.

In sum, this research provides a wide range of new approaches for fusing kinematic

and "nonkinematic" or sensor signature information in dynamic object recognition, and

evaluating the results of that fusion. Multisensor fusion of target kinematic and sensor

signature information remains an exceptionally rich and promising field. The research

described here has illuminated significant new directions for research in multisensor fusion

and target recognition. First, multiple model estimators and syntactic sequence comparison

methods offer powerful tools for exploiting the joint likelihood of physical processes over

time. Second, treating tactical targets as collections of parameters executing particular

state transitions over time allows one to apply a very large family of existing estimation

and control approaches to dynamic object and target recognition. The methods used in

this research are but members of this family - many other methods await application.
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Appendix A. Definitions

Algorithm Q An algorithm developed by General Dynamics [20] for target recognition

by high range resolution radar, or the physical realization of this algorithm as a set

of Fortran subroutines. See slide distance, below (note: the elements of General

Dynamics responsible for this effort were absorbed by Hughes in 1993).

ambiguity function, generalized ambiguity function In general radar usage, an am-

biguity function [57, 15, 16] is a real function of two variables, time delay and fre-

quency, which provides an indication of a radar's ability to distinguish between two

targets with different ranges and/or doppler shifts. Ambiguity functions are used in

radar pulse waveform design. The generalized ambiguity function (see Eqn. (2.37))

is the expected or mean value of a generalized likelihood function defined for various

conditions, taken over all possible measurement values for some set of true condi-

tions, and provides an indication of the ability of a likelihood function to distinguish

between two state/parameter sets.

angle of attack The angle, generally and in this work denoted a, between the body Xb

vector and the projection of an aircraft's wind vector (or velocity vector, for an

atmosphere at rest with respect to the inertial frame as assumed in this work) onto

the body ib - Z-b plane. See Fig. 5.23.

"a posteriori The definition of this term of interest to us, from the several provided by

Webster, is "based on observation or experience; empirical" (as opposed to "a pri-

or•"). In our case, this term refers to the whole or sum of information available about

some event or system after additional or new information is extracted from some set

of measurements or observations and combined with a priori knowledge.

"a priori The definition of this term of interest here, from the several provided by Webster,

is "before examination or analysis" (as opposed to "a posteriori"). In our case, this

term refers to information available about some event or system before additional

or new information is extracted from some set of measurements or observations. A

priori knowledge may be based on previous measurements or observations, theoretical

knowledge, other sources, or may not exist.
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aspect axLgle path (tru, or estimated) The path traced on the hypothetical aspect an-

gle sphere (see reference below) of unit radius by the object-to-sensor unit vector.

May be true, based on true object orientation and sensor location, or estimated, as

from kinematic measurements, state estimation, and assumptions as to orientation

required for given kinematics.

aspect angle region, subset See aspect angle space first. A region on or subset of the

hypothetical aspect angle sphere (of unit radius). If an aspect angle region or subset

is one-dimensional, it is equivalent in description to an aspect angle path.

aspect angle space The entire 4wr steradirn (two-dimensional) extent of the hypothetical

aspect angle sphere (equivalently, the surface of the unit sphere) is closed under

allowable transitions on that sphere, and is therefore considered an aspect angle

"space." A third dimension of aspect angle ("roll" about the sensor-object vector)

may be required to specify angular relationships for signatures that are not in-plane

rotation invariant, or where the full three degree-of-freedom rotational state of the

object is under consideration. See Sect. 3.2.

aspect angle sphere See "hypothetical aspect angle sphere.`

bank angle An Euler angle about the body frame Xb axis, last in a series of three Euler

angles (azimuth, elevation, and bank) required to rotate the navigation (inertial)

frame into the body frame. This is not the same as roll angle (see roll angle below

and [79]).

bijective A term used to describe a mathematical function that is both "one-to-one" and

"onto" (these terms defined below).

bWn Generally, an interval in some space: usually one interval of a set of equal-width

intervals defined by a partitioning of a simply connected subset (a larger interval) of a

one-dimensional space. Values of some function over the space at some point or points

which fall within the interval of a given bin may be assigned, summed, or integrated

into that bin, allowing the distribution of the (possibly continuous) function values to

be approximated by discrete bin numbers and values. Representation of observed or

measured function values as bin "return" values is often forced by limited resolution
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of the measurement system (i.e., sensor resolution equivalent to bin width) or a desire

to use clustering techniques on the output.

cross-correlation In stochastic processes, a measure of the interdependence between two

(possibly vector-valued) random variables, found by taking the expected value of the

outer product of the two variables over all realizations [153:93]. The one-dimensional

signal (cross-) correlations c(n) for two signals or images a and b represented as

discrete sequences (see [93, 99, 1781) or vectors of K or more elements are defined by

equations of the basic form:

K

c(n) E a(k)b(k - a)
k=1

In general it is desired to find the value of n which maximizes this expression. This

expression can be extended to provide for two or more dimensions in a and b, and

to provide for normalization by the "energy" (or an analogous measure) in a and b.

decision theoretic (pattern recognition) Pattern recognition systems which call for

each pattern class to be represented by a point or collection of points in a multi-

dimensional feature space, each dimension of which is parameterized by a continuous

or discrete set of values of some measurable quantity, a feature. Where more than one

point is assigned to a pattern class, each point generally represer,.. one realization

of a stochastic (i.e., "random") process which generates the feature values for that

class. The process is generally stochastic in four respects, due to unknown or a priori

unpredictable variations in (1) class parameters, (2) class state, (3) environment (in

particular, as affects the object-sensor line-of-sight), or (A) sensor system.

doppler velocity (measurement) A quantity derived from a returned waveform (gen-

erally emitted originally by the receiving sensor - that is, a monostatic sensor ar-

rangement) which indicates the relative velocity between the sensor and the observed

object, based on (doppler) frequency shitts in the waveform upon reflection at the

observed object. For a monostatic sensor, doppler velocity is a measurement only

of the component of sensor-object relative velocity along the sensor-to-object vec-
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tor, and provides no information on object velocity normal to that vector. Doppler

velocity can be obtained from radars of the type considered in this research [16, 203].

dynamic programming A technique for finding a best or "shortest" path through a

discrete, finite set of possible decisions, where that path obeys the Principle of Op-

timality (see Sect. 2.4.1).

dynamic time warping A technique for assessing the similarity of two finite sequences

of speech features or feature vectors, as "discretized" or extracted from windowed or

partitioned continuous speech, by removing differences dae to expansion or contrac-

tion of one sequence relative to the other (see Sect. 2.4.2).

dynamics The branch of mechanics that deals with forces, masses, and their relation

primarily to motion, but also sometimes to equilibrium conditions (as opposed to

statics, which deals only with force and mass in absence of motion, and kinematics,

which is defined below; see [144]).

extended Kalman filter A class of mathematical estimators derived from the (linear)

Kalman filter, designed to make "near-optimal" estimates of quantities for which

time-propagation and/or measurement equations are nonlinear, using truncated Tay-

lor series and relinearizations about current values (see Sect. 2.3.1.1).

feature This term has basically two meanings in pattern recognition, depending on the

form of pattern recognition considered. In decision theoretic or syntactic pattern

recognition, a feature is some quantity or property pertaining to object classes

of interest which can be measured or observed, but which may or niriv not pro-

vide unambiguous information as to class membership. In point or -. ,)f points

correspondence-based image recognition techniques, however, a feat 11hr , - por-

tion of the object image pertaining to object classes of interest which is believed to

be meaningful to the recognition process (a landmark), but which may or may not

be easily measurable and usable by the recognizer - the object of these correspon-

dence systems is to find correspondences between points on the unclassified object

and features on a library image (see App. B).
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feature attribute Generally equivalent to the first meaning given for the term feature.

See feature observables below.

feature observables Equivalent to the first meaning given for the term feature, this term

is preferred by the author over the term feature attribute because of the emphasis

given to the fact that the sensor can observe or measure these quantities (presumably

a object could have an "attribute" that is not observable).

feature space A vector space in which a given feature observation or measurement of the

object can be expressed as a point. Thus, the dimension of the feature space is deter-

mined by the number of individual scalar elements (which may not be independent

in any sense of the word) in a feature observable measurement vector. Feature spaces

of dimension n are generally taken to be isomorphic [170:173] to Rn, the (Cartesian)

vector space defined by a collection of n mutually orthogonal real axes sharing a

common origin (see App. B).

fire control The process of controlling the operation of a classical gun or unguided rocket-

type weapon system, i.e., a weapon system firing projectiles which cannot be con-

trolled in flight, for which prediction of target trajectory over the projectile time of

flight is the critical concern in aiming.

flight path angle The angle between an aircraft's velocity vector (not generally equal to

the wind vector) and the local horizontal plane (see Fig. 5.23).

global descriptor A (generally scalar) value which is in general a function of the entire

(global) extent of a object, as isolated (segmented) and observed by some sensor (see

App. B).

heading angle The angle between local north and the (vertical) projection of an aircraft's

velocity (not generally wind) vector onto the local horizontal plane (see Fig. 5.23).

heuristic Defined by Webster as "valuable for stimulating or conducting empirical re-

search but unproved or incapable of proof." In discussion of optimal estimation

techniques, heuristic carries the meaning "not mathematically rigorous." In pat-

tern recognition [212:18-19], heuristic carries the added meaning "based on human
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intuition and experience," so that artificial intelligence-based pattern recognition

procedures are considered to fall into the heuristic category.

high range resolution (HRR) A term used to refer to radar systems which can isolate

reflected returns from one pulse into partitioned intervals of return time such that

the speed of light multiplied by one time interval equates to a range extent at the

target that is much smaller than the total extent or projection of the target along

the sensor-to-target vector. Each such range or time interval equivalent is a range

"bin."

hypothesis From Webster, a proposition or supposition tentatively accepted to provide a

basis for further investigation (e.g. in our case, a choice of a priori likely parameter

sets for testing against observed measurements from an unknown object or parameter

set).

hypothetical aspect angle sphere A hypothetical sphere of unit radius, centered on

the origin of the object body frame and fixed with respect to the body frame axes.

Provides a physical representation for the concept of a two-dimensional aspect angle

path, region or space (these terms defined above). See Fig. 1.2.

Kalman filter A class of mathematical estimators designed to make optimal estimates of

quantities (states) for which time rate of change (propagation) can be described as

linear equations driven by white Gaussian noise of known statistics and deterministic

inputs, and for which measurements are available which can be described as a linear

combination of some or all of the states and inputs, plus additive white Gaussian

noise of known statistics. The term "optimal" is with respect to a number of pos-

sible criteria for judging estimator optimality: the estimate is the mean, mode, and

median of the conditional density of the estimated variable, conditioned on available

measurements; the estimate is the minimum mean-square error estimate; and so on

(see [153:231-236]).

kinematic Having to do with the branch of mechanics (kinematics) that deals with aspects

of motion (position, velocity, acceleration, and so on in translational and rotational

degrees of freedom) apart from considerations of mass or force (see [144]). Generally
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used in multisensor fusion to refer to measured quantities related directly to object

translation, e.g., sensor-object relative position, or range and spatial angle quantities,

and their derivatives.

likelihood function, generalized likelihood function The classical likelihood func-

tion p(z I wi) is the probability or probability density function, if the latter exists,

of obtaining a particular measurement z, given that we are observing an object

of class (i.e., state and parameter set) wi - with the maximum likelihood classifier

assigning an unknown object to the class for which this likelihood function is maxi-

mized. A generalized likelihood function L is a function of z and wi defined for some

identification problem, ideally such that the maximum likelihood function value for

measurements from a true system with states and parameters w1 is obtained from

the generalized likelihood function optimized for that set of states and parameters,

so that a correct state and parameter set identification can be made. The likelihood

function value need not provide a probability measure or analogous quantity (e.g., a

Dempster-Shafer mass). See Sect. 2.6.

morph A short form of the expression morphological transform - generally, a change in

the shape of a two- or three-dimensional physical object (see [22]).

motion warping As defined for this research, the process of using dynamic programming-

based sequence comparison techniques to compare (1) a sequence of observed fea-

ture vectors from a object of unknown class with (2) object library models, using

measurements of object kinematics and dynamic restrictions for each class known

(approximately) a priori, to determine the most likely object class to have generated

the observed sequence of feature vectors and kinematic measurements.

multisensor fusion From [218:1] (given there as a definition for data fusion, but equally

applicable for multisensor fusion), "a multilevel, multifaceted process dealing with

the detection, association, correlation, estimation, and combination of data and in-

formation from multiple sources to achieve refined state and identity estimation, and

complete and timely assessments of situation and threat.'; As employed in this re-

search, the term multisensor may refer to different elements of information obtained
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from the same piece of physical hardware: e.g., object position measurements and

HRR signatures obtained from the same radar assembly.

nonkinematic Used in multisensor fusion to refer to measured object quantities not di-

rectly indicative of (and not having the dimensions of) translation or rotation states

and higher derivatives thereof, e.g., feature observables, sensor signatures, etc.

nonparametric Decision theoretic pattern recognition or classification techniques which

do not assign a probability measure of class membership to points based on their

position in feature space, making instead a class membership decision for a given

measurement based on the distance (in some defined metric) in feature space from

the measurement to points corresponding to known classes. Also used to refer to

techniques for estimating the probability density function of a process without a

priori knowledge as to the form (Gaussian, Chi-square, etc.) of the density.

object-to-sensor vector or unit vector The vector (or corresponding unit vector) as-

sumed to originate at the origin of the object body frame and terminate at the sensor

aperture.

occlusion, occluded An occlusion is an obstruction in the line of sight between an object

and a location which prevents all or part of the (occluded) object from being observed

at the given location.

off-nominal A term used in this research to refer to errors between (1) the true object-

sensor aspect angle at any point in time and (2) the corresponding object-sensor

aspect angle as estimated from measured object kinematics and an assumption of

object class, such that the error so described does not lie on the aspect angle path

for both true and estimated aspect angle sequences.

one-to-one From [6:36], a term used to describe a function F for which each element

in the range F(S) of the function corresponds to only one element in the domain

S [6:36].

on-nominal A term used in this research to refer to errors between (1) the true object-

sensor aspect angle at any point in time and (2) the corresponding object-sensor

aspect angle as estimated from measured object kinematics and an assumption of
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target class, such that the described error lies along the aspect angle path for both

true and estimated aspect angle sequences.

onto From f6:35], a word describing the relationship between a function F, its domain S,

and a set T containing the range F(S) of the function, in which F(S) = T.

parameter A quantity of interest to an estimator, fundamental to defining the behavior

of a system over time as for "state" (defined below), but which, unlike states, is

assumed not to change significantly over time periods of interest.

parametric A term used to describe decision theoretic classification or pattern recognition

techniques which explicitly assess some measure of the probability of observed events

(i.e., following the second meaning given below for statistical pattern recognition).

Also used to refer to techniques for estimating the probability density function of

a process, where the form (Gaussian, Chi-square, etc.) of the density is known a

priori.

pose estimate An estimate of the aspect angle presented by some object, as viewed by

a sensor.

PSRI An abbreviation for "Position-, Scale-, and (In-Plane) Rotation-Invariant." This

phrase means that the value so termed, corresponding to an observation of some

object by some sensor, will be the same, (1) independent of position changes normal

to the sensor-object vector (so long as the object remains in the field of view), (2)

independent of scale changes as from changes in sensor-object range or magnification,

and (3) independent of rotations of the sensor relative to the object about the sensor-

object vector only. This term does not imply invariance of the described value with

respect to object aspect angle changes. Also, quantities that are theoretically PSRI

may not be so in practice, due to factors like pixel orientation and size.

radar cross section (RCS) From [16:A-14]: a measure of the reflective strength of a

radar target; usually represented in square meters (or decibel square meters - dBsm),

and defined as 4wr times the ratio of (1) the power per unit solid angle scattered in

a specific direction to (2) the power per unit area in a plane wave incident on the

scatterer from a specified direction.

A-9



range sweep The return or output realized by reflecting one pulse from a high range

resolution radar against a target, expressed as radar cross section in each of many

"range bins" in some multiple-bin interval along the sensor-target vector (may also

refer to the summed results from many such pulses).

residual the difference between measurements observed and predicted (generally, by an

estimator) for some measurement event (see Sect. 2.3.1.1).

roll angle An Euler angle about the velocity frame i, axis, taken prior to sideslip angle

and angle of attack, first in the sequence of Euler angles required to rotate the velocity

frame into the body frame (see Fig. 5.24). This is not the same as bank angle (see

above).

segmentation A general term for the process by which a sensor (usually an imaging sen-

sor) system separates potential objects from probable background clutter, generally

prior to processing the separated or segmented objects for recognition or discrimi-

nation, although segmentation may be performed in combination or iteratively with

other processes.

sideslip angle The angle, generally and in this work denoted '3, between an aircraft's

wind vector (or velocity frame unit vector I,, for an atmosphere at rest with respect

to the inertial frame as assumed in this work) and the (perpendicular) projection of

that vector on the body 1 b - ib plane. See Fig. 5.23.

slide distance A distance defined by Algorithm Q (see above) which attempts to quantify

the difference between two high resolution radar range sweeps, in accordance with a

metric defined by General Dynamics (see Sect. 2.2.3).

smoother An estimator which makes estimates of some quantity (state, etc.) at some

time, based or conditioned not only on measurements prior to that time, but also on

measurements taken after that time (see Sect. 2.3.1.2).

state From [153:26]: the state of a system at any time t is a minimum set of values

XM(t),..., I,,(t) (an n-dimensional vector), which, along with the input to the system

for all time 7-, r > t, is sufficient to determine the behavior of the system for all

r> t.
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statistical pattern recognition A term used to refer either to decision theoretic (see

above) pattern recognition concepts in general, or, (more precisely) to decision the-

oretic methods which define a probability or classical likelihood of class membership

based on the location of a feature observable measurement in the feature space (the

latter also called "parametric" classification methods).

structural pattern recognition A family of pattern recognition concepts which assign

class membership based on the type, number, and, in some sense, relationships or

structure between observed features for some object of unknown class, and features

for known classes.

sup An abbreviation for supremum, or least upper bound of a set [6:9]. If the set has a

maximum element, that element is also the supremum.

syntactic pattern recognition An alternative name for structural pattern recognition

(see above), reflecting the language-based origin of many techniques in this area [90].

target acquisition and tracking The process of identifying a potential target using a

sensor system and following the motion of that target over time.

warping path A particular sequence of associations between elements of two feature ob-

servable sequences. Due to continuity constraints, or rules for the associations, the

allowable sequences of associations have the appearance of paths through the warping

path region or "space" (see Fig. 2.8).

warping path cost The total cost or distance associated with a particular sequence of

associations between elements of two feature observable vector sequences. The path

having minimum warping path cost, subject to various rules for the associations, is

taken to identify the expansions, compressions, insertions, and deletions which make

the two sequences most similar to each other (see Eqn. (2.29)).

warping path region or "space" The finite set of all possible associations between el-

ements of two finite sequences of feature observable vectors, from which sets of as-

sociations may be defined under applicable rules to define warping paths. These

spaces are illustrated for (1) warping of two one-dimensional sequences in Fig. 2.8

(producing a "two-dimensional" warping path region or space) and for (2) warping
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of a one-dimensional observed sequence against a two-dimensional region of possi-

ble sequences in Fig. 2.9 (producing a "three-dimensional" warping path region or

space).
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Appendix B. Background Information on Pattern Recognition

This appendix is intended to provide a tutorial overview of pattern recognition for

those without a background in the field. It should be read following the brief overview in

Sect. 2.2.

B. 1 Taxonomy of Pattern Recognition Concepts for 3-D Objects.

The problem with taxonomies for pattern recognition is that every author in the

field has his or her own. More specifically, pattern recognition is a multidimensional topic

in the mathematical sense of the word, and each author makes distinctions along his or

her preferred directions in the space of all possible pattern recognition concepts. The

following "multidimensional" taxonomy is fundamentally based on the works of the late

renowned K.S. Fu [90, 89, 88], Miclet [161] and Tou and Gonzalez [212], and draws from

the discussion on concepts for "recognition, tracking, and pose estimation of arbitrarily

shaped 3-d objects..." given by Gottschalk et al. [102], further supplemented by material

from Duda and Hart [72], Fukunaga [91, 92], Pratt [178], Nasr [169:111-139] and others [55,

76, 176].

Fu [90] sets the fundamental distinction in pattern recognition as between "deci-

sion theoretic" and "syntactic" (or "structural") methods. Decision theoretic classifica-

tion methods include the classical nonparametric (feature space distance-based discrimi-

nant or decision function) and parametric (probabilistic, ideally Bayesian) classifiers. Mi-

clet [161] similarly sets the fundamental distinction as one between "statistical" or "syn-

tactic/structural" methods, including, as does Fukunaga [91, 92], both parametric and

nonparametric classifiers under the heading of "statistical." By contrast, Tou and Gon-

zalez [212] would agree generally with Fu's taxonomy, but use the term "mathematical"

rather than "decision theoretic," and add a third category, "heuristic" (ad hoc procedures,

often based on human experience, including artificial intelligence methods). In contrast

to Miclet and Fukunaga, Tou and Gonzales would consider only parametric classifiers to

be "statistical" in nature. Note that we specifically distinguish the task of classification

from (probability) density estimation - density estimation also can be parametric or non-
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parametric, respectively, depending on whether or not the form of the density (Gaussian,

Poisson, etc.) is known a priori.

In general, it can be said that decision theoretic/mathematical, or (in the broad

sense of Miclet and Fukunaga) statistical classification concepts are those which require

measurement or calculation of some quantity or quantities (features) for all known object

classes to establish a library or map in the feature space (equivalently, in the terminology

established in Chapter I, the feature observable space). The recognition process then seeks

to establish class membership for an object of unknown class, based on the nearness (in

some sense) of the object's measured features to elements in the library or points on the

map. Moreover, the parametric, or "true" statistical classifier, provides a relative measure

or estimate of the probability of the object's membership in any given class.

In structural or syntactic pattern recognition, on the other hand, we seek to define

a "grammar", whereby each object class corresponds to a particular order of "pattern

primitives" - subpatterns which are readily recognized by the classifier. Pattern primitives

in a syntactic classifier could be identical to the features used in some decision theoretic

classifier - the key difference is the syntactic classifier's concern with order of presenta-

tion. A syntactic description of an object is generally some form of string or sequence,

and recognition of an unknown object is reduced to comparing its observed pattern prim-

itive sequence with sequences for known classes. Syntactic methods commonly make use

of analysis techniques and terms applied to the study of human and animal languages.

Significantly for our later purposes, Miclet [161] noted the association between syntactic

pattern recognition and dynamic programming sequence comparison techniques for speech

processing (Fu was undoubtedly aware of this relationship, but did not discuss it in de-

tail in works known to this author, cited above). This association is further discussed in

Sect. 2.4.5.

The approaches of Fu, Miclet, and Tou and Gonzalez can be compared with that

discussed by Nasr [169:111], who saw from his multisensor fusion/object recognition per-

spective, a fundamental distinction between "statistical" and "model-based" approaches.

There is an important dichotomy here in approach between Nasr and his community with

respect to the former authors. Nasr is concerned with information storage techniques - his
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pattern recognition processing techniques are all basically decision theoretic or heuristic

(artificial intelligence) in nature. To Nasr, a "statistical" pattern recognition system is one

which maintains a library database, or mapping, or set of decision surface parameters for

feature information recorded a priori for objects, aspect angles, and conditions of interest.

This is certainly the original and most common way to store data for decision theoretic

classifiers, but the association between data storage method and classification method is

not exclusive from either direction.

Similarly, the potential exists for confusion between the syntactic or structural ap-

proach of Fu et al. and Nasr's models in the sense that structural approaches often specify

some "model" as the source of the distinctive sequence. But to Fu et al., a model would

most often be an abstraction - an automaton [88, 90, 212, 70] or one of its analogs (e.g.,

a hidden Maikov model [176, 68]), generating a sequence of pattern primitives with a dis-

tinctive structure, while Nasr's model is a software simulation of a real three-dimensional

object like a tank or an aircraft, and the physics that produce observables of interest.

Moreover, the output of Nasr's model would not generally be a characteristic sequence,

and might well be a predicted measurement vector or function no different in form from

those maintained in the database of his "statistical" classifier.

Gottschalk [102] on the other hand, working from the classical image recognition

perspective, made the distinction between pattern recognition techniques using (1) global

descriptors or (2) point correspondences as we will discuss below. Briefly, global descriptors

are mathematical quantities that are defined in general by the entirety of an observed object

at any particular aspect angle. If any element of the object (as observed or measured by

the sensor) changes, then the global descriptor value may change. Alternatively, point

(or locus of points) correspondence methods require the classifier to identify the presence

or absence of some particular point, line segment, entity or combination thereof on the

object, such as one would perceive when viewing the object, in comparison with a priori

data on likely object classes. Gottschalk's view of data storage by library database or

model representation is similar to Nasr's.

Relating Gottschalk's work to Fu et al. and Nasr, we note that global descriptors

are commonly used as features in decision theoretic/mathematical classifiers, while point
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correspondence systems could be classed as either heuristic, syntactic, or decision theoretic,

depending on the operations performed using the point-based information. To Gottschalk's

two distinctive techniques for image recognition we will add and distinguish those that use

correlations (which could be considered a kind of pointwise correspondence). Correlations

should probably be considered as a very special form of decision theoretic classifier, since

they can rather directly provide a numerical "distance" value indicating similarity or,

perhaps with proper design and training, probability of class membership. Inherently,

however, the correlation process considers structural information.

A particular caution is in order at this point regarding the use of the term "feature."

In discussions on global descriptors, the term "feature" is ge. -ally synonymous with the

descriptor itself - a numerical quantity derived from a sensor, a particular value of which

defines a particular location in some "feature space." In discussions on correspondence

methods, however, a feature is that particular point, line segment, entity, or combination

thereof on the object - sometimes called a "landmark' [102] - which we desire to place in

correspondence with the like entity on the correct object library representation.

B.2 Decision Theoretic Object Recognition.

Combining the decision theoretic concepts of Fu et al. [90] with the terminology for

data storage techniques used by Nasr [169], we now contrast the classical nonparametric

and parametric (Bayesian and maximum likelihood) approaches to object recognition as

widely used in the multisensor fusion community.

B.2.1 Decision Theoretic Methods - Survey. Recall that parametric or proba-

bilistic decision theoretic classifiers and the clustering of features in feature spaces for a

priori known objects and aspect angles were discussed in Sect. 2.2.1. By comparison, in

a typical nonparametric classifier, we use the same a priori information by measuring the

features of an unknown object, and then find the cluster closest in some distance sense

to the unknown object's feature set or vector. The factors which defined this cluster are

taken then to indicate the unknown object's class and orientation (often a discretized value

reflecting Pn orientation within some partitioned aspect angle interval or 'bin"). Clearly,
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the choice of metric and definition of "close" in our multidimensional feature space are

critical, as are the centroid-to-centroid separation and dispersion of the clusters.

One definition of distance or closeness calls for each object class/aspect combination

to be represented by a cluster centroid (mean) oi" single prototype point, so that the shortest

measurement-to-prototype distance "wins" (i.e., the unknown object is taken to belong to

the class of the nearest prototype) [212:77]. Another definition of closeness is established

by defining decision surfaces or functionals in the feature space to separate the clusters -

these functionals operate on observed feature values (vectors) to produce scalars - measures

of distance betN% 3en the observed values and the surfaces. Precise locations for decision

surfaces may be defined automatically through a "supervised training" process - providing

the classifier with a number of observations labelled as to which object class produced

each, and allowing the decision surface parameters to converge to appropriate values.

If the clusters are of different dispersion or "diameter," but completely separated

(in the sense that their convex hulls do not intersect), we will probably prefer to define a

system of separating hyperplanes (linear functionals [170]) or other decision surfaces such

that the position of a measured feature vector relative to the surfaces will associate it with

a particular cluster [212:40-48]. If the clusters overlap but their component points are

equally likely to occur overall (or if the relative number of points in the clusters reflect

the a priori likelihood of the conditions associated with each cluster), we may prefer to

use a "K-nearest neighbor" technique - assigning the unknown object to the pattern class

which has the largest number of a priori-defined data elements in the total set of "K" data

elements that are closest to the unknown object feature vector [212:81-83]. As an example

of how these various approaches relate, observe that if each cluster has only one point, then

the (single) nearest neighbor technique is equivalent to the "nearest prototype" method.

Relating parametric to nonparametric approaches, we may observe that for two clus-

ters with Gaussian distributions, the decision surface, or locus of points in feature space

that defines the boundary between points with higher probability of belonging to one clus-

ter versus belonging to the other, is described by a quadratic (more properly, for higher

dimensions, hyper-quadratic) equation - defining the quadratic classifier. 7f the distribu-

tions (covariances) of the two clusters are identical, the surface reduces to a hyperplane
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normal to and bisecting the line segment joining the two cluster centers, and the decision

logic is then identical to that of a linear classifier (i.e., a nonparametric decision made with

a separating hyperplane).

All nonparametric classifier techniques result generally in some object-to-class assign-

ment, but they do not provide all of the information we would like to have - in particular,

we need a metric of class membership likelihood that can be combined with results from

other classifiers, with each result weighted optimally according to our confidence in the

individual classifier. If we have several separate object recognition classifiers providing

answers which we must fuse to derive a final answer, this kind of relative information is

critical - otherwise, we may be reduced to a "voting" system, in which each classifier has

only one "vote" (although votes may be weighted heuristically based on our confidence in

the answer given by a particular classifier).

The probability measures provided by parametric classifiers, however, do provide a

metric suitable for comparison with other classifiers. The improved utility of information

and decision optimality prrvided by a (true) statistical or parametric classifier over a non-

parametric classifier in multisensor fusion and object recognition applications has brought

about a general preference for parametric classifiers over nonparametric classifiers for as-

sociating measurements with a priori object feature information, commonly stored in a

multidimensional feature space representation or library database. This habitual associ-

ation, coupled with the terminology differences between authors noted above, commonly

leads to the somewhat ambiguous application of the term "statistical" to the classification

technique, the data storage technique, or the combination of the two.

B.2.2 Statistical Library Approaches. The "statistical library" or database/fea-

ture space mapping is the original and most common method for storing a priori pattern

class information and implementing decision theoretic classification concepts. Considering

this database as a mapping of recorded feature values from known classes into our feature

space, decision theoretic concepts like separating hyperplanes are readily envisioned. All

such libraries are built by measuring or calculating and recording values of our chosen

features for selected values of object class, orientation, and other conditions (operating
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state, background, etc.). In recent object recognition research reviewed by the author, these

features generally have been global; e.g., see [42, 43, 44, 94, 101, 169, 8]. Measurements

may be extracted from actual objects or models, and preserved as such or reduced to

decision surface functions, but the object or model form is not preserved as such in the

database.

An increasingly popular alternative to classical decision theoretic techniques with

"statistical" library databases is provided by artificial neural net (ANN) methods [185, 219,

174] and other "trainable" classifiers. It has been recognized for some time that "multi-

layer perceptron, feedforward" neural nets and a variety of related classifier concepts can

be "trained" in a "supervised" fashion, so that a trained net provided with an unlabelled

observation will output or indicate the appropriate object class. The neural net is both a

data storage technique and a classifier.

The significant advantage of neural nets and similar trainable classifiers over classical

clustering and statistical classifiers is simply that the designer expends no effort in defining

clusters, decision surfaces, or object class probability densities in his or her chosen feature

space: given an adequate classifier structure to begin with, the classifier's parameters

(generally) converge automatically to or "learn" appropriate values during the training

process. In particular, unlike classical nonparametric training approaches, neural nets are

generally not restricted to a particular functional form (linear, quadratic, etc.) of decision

surface - the net constructs arbitrary decision surfaces as required from elementa. functions

in the net structure.

Originally, the output from the typical multilayer perceptron feedforward net was

taken only as indicating the "most likely" or "nearest neighoor" object class (source) for

the observed data (a nonparametric classification). Recently, however, Ruck [1901 has

shown that this net approximates a Bayesian statistical classifier under certain conditions,

so that the relative magnitude of output values from the nodes representing the various

object classes may be taken as proportional in some sense to values of p(w, I z) in Eqn. (2.1).

The problem, however, with all statistical library approaches is their inflexibility to

changing environmental, background, operational, and other conditions that affect object
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signatures. By including all possible such conditions in defining our databases of feature

values for each object/aspect, or in estimating the classical likelihood p(z I wi) for each wi,

or in training a neural net, we may increase ambiguity, and may decrease the probability

of making a correct decision in any one particular set of circumstances. Building separate

databases or neural nets for each likely set of circumstances has its own pitfalls, principally

data storage problems and the unavoidable fact that, when approximating a multidimen-

sional continuous function (i.e., the set of all possible object scenarios) with values at a

finite number of discrete points, we will effectively never have the correct combination

required for a given implementation.

B.2.3 Model-Based Approaches. Recognition of (1) the problems with statistical

library-based approaches and (2) the greater capability afforded by modem data processors

has led the object recognition community to a general agreement that model-based systems

offer a more promising approach. "Model-based," in the sense implied by Nasr [169] and

others [218] implies that the recognizer carries some form of 3-D representation of each po-

tential object and, accounting for object aspect, operation, environment, background, and

other conditions, calculates on-line in near-real time what the sensor should see, providing

a basis for comparison with actual measurements.

The level of model fidelity is completely open to the designer. Systems discussed

in current literature vary from use of "wire frame" or stick models to exceptionally com-

plicated models that consider, for example, heat flow between vehicle components (e.g.,

see [169]), or multiple reflection of radar waves in engine cavities [21]. Certainly, suitability

of very highly complicated models for on-line implementation remains an open issue.

Fundamentally, model-based approaches seek to find an object model and (generally,

in a 3-D model) orientation that define the "nearest neighbor" to the given observation.

Thus they are most generally (but not exclusively) suitable to nonparametric classification.
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B.3 Pattern Recognition Using Global Descriptors.

As noted above, global descriptors are numerical quantities that are defined by the

entirety of an object at any particular aspect angle. If any element of the object as

measured by the sensor changes, then the global descriptor value may change.

Generally, the term "global descriptor" refers to some value extracted from a 2-D im-

age. Resolution and identification of specific local entities on the object are not important

in most global descriptor implementations. The fundamental attraction and yet weakness

of many classical image-extracted global descriptors is that they are largely or completely

defined by the object silhouette. However, dependence on the "whole image" makes these

global descriptors sensitive to errors by occlusion and segmentation (see Appendix A for

definitions). Another attraction of global descriptors is that many are position-, scale-, and

(in-plane) rotation-invariant (PSRI). In terms of pattern recognition for 3-D objects from

arbitrary aspect angles, this means that the global descriptors are nominally (excepting

noise, environment, and background effects) a function only of object type and two object

body-to-sensor angles, say azimuth and elevation. Target scale (range) and rotation angle

("roll") about the sensor-object vector are irrelevant in theory (practical factors, like pixel

size and orientation, may cause problems in practice). Three particularly popular forms

of global descriptors are discussed in Lie following subsections.

B.3.1 Moments. Analogously with the concept of two-dimensional mass moments

for a flat physical object, we can define image moments for a segmented object. The

moment calculation may treat each pixel within a given segmented contour as having

equal "mass," or it may weight each pixel according to some additional information. For

example, pixels in IR imagery may be weighted according to their image intensity - thus

a "hot" pixel has more "mass" than a "cold" one.

Starting with these fundamental "physical" moments, Hu [111] derived a set of PS1I

features, commonly called "Hu moments" that have seen extremely wide application [225].

See either of [111, 178] for a complete listing.
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B.3.2 Fourier Descriptors. Fourier descriptors [98, 178, 217, 101] are a class of

frequency domain descriptions for the silhouette of a segmented object. For example, we

may take the Fourier series expansion of the curvature of the silhouette, curvature being

defined as the derivative of the tangent angle with respect to length along the silhouette

curve. Clearly, the curvature is periodic and real as we make multiple traverses of the

silhouette - thus we can find the Fourier series expansion for the curvature, and extract

a finite number of Fourier coefficients, which are the descriptors. Fourier descriptors are

subject to "noise" from poor segmentation and occlusion, since these error sources affect

silhouette most immediately. Note that Fourier descriptors are not to be confused with low-

frequency Fourier spatial frequency components extracted by digital signal processing or

optical correlations, since spatial frequency involves image factors other than the segmented

silhouette (see Sect. B.4).

B.3.3 Miscellaneous Global Descriptors. A variety of other features have been

defined and used for object recognition with imaging sensors. These include "complexity"

(ratio of number of edge pixels to number of internal pixels for some segmented region),

height-to-width ratio, brightness (intensity), "texture", and so on (see [218:99], for exam-

ple). For the most part, these are PSRI (position, scale, and rotation-invariant) quantities.

Their utility and significance in segmentation and recognition have been investigated in

several studies, e.g. [186, 190, 226, 225].

B.4 Pattern Recognition Using Correspondences.

Correspondence methods require the classifier to identify the presence or absence of

some particular point, line segment, object or combination thereof ("features" or "land-

marks" for this type of classifier) on the object, in comparison with a priori data on likely

object classes [102, 110]. Correspondence classifiers are increasingly model-based, but clas-

sification techniques may be heuristic, syntactic, or decision theoretic. The key to success

in a correspondence classifier is making the object-model-feature to observed-object-feature

association - in general this calls for higher resolution on the object surface than required
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by global descriptor-based systems. Also, correspondence-based classifiers are generally

not position-, scale-, and (in-plane) rotation-invariant (PSRI).

B.5 Pattern Recognition Using Correlations.

Target-image to library-image (template) correlations can be performed using 2-D

digital image processing or by (much faster) optical processing using the Fourier transform

properties of optics [47, 58, 93, 98, 99, 103, 158, 178, 188, 232]. In general, correlation

systems are not position, scale, and (in-plane) rotation-invariant, but at least one technique

achieves these attributes, by transforming the object and test images as shown in Kobel

and Martin [127], using the method of Horev [109]. Range "maps" obtained by laser radar

measurement of unclassified targets could be matched to known targets for varied aspect

angles using forms of 3-D correlation.

Since correlations are extremely sensitive to sensor-object aspect angle [1031 and

object operating state, they are perhaps best accomplished using object models which can

be oriented and adjusted for operating conditions, etc., to produce the "best" correlation

with an input object. The model producing the highest overall correlation value is taken

to indicate the object class. Correlations can be performed using a large library of object

representations over various aspect angles, but this approach is increasingly less favored

due to data storage requirements.

B.6 Summary

In combination with the ideas presented in Sect. 2.2, this appendix has presented a

brief overview of key concepts in pattern recognition, particularly as applied to military

targets. For further information in this area, the author recommends that the reader

scan the bibliography for titles of interest. General references [72, 212, 92, 90, 169, 178,

70, 174] are appropriately titled. Other sources relating to particular sensors and their

phenomenology may also be of interest, and can be identified by their titles.
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Appendix C. Detailed Equations for Estimation and TRacking Algorithms

C. 1 Introduction

This appendix primarily presents the dynamics (state) and measurement equations

for the Kendrick/Maybeck/Reid [120, 121], Andrisani/Kuhl/Gleason [5], and Sworder/-

Hutchins [208, 209] estimators. The equations are presented here using their original

variables, for which definitions are provided.

A less detailed description of the Bishop estimator is also provided. This tracking

algorithm was briefly mentioned in Sect. 2.3.1.4.

Finally, the equations for fixed point and fixed lag smoothing are given as in [154:16-

17], with minor comments regarding their implementation for this research. Additional

results for scenarios like those in Chapter V are also presented.

C.2 The Kendrick / Maybeck / Reid Estimator

C.2.1 Kinematic Filter.

C.2.1.1 Kinematic Filter State Equations. Using the form of Eqn. (2.14),

the state equations for the kinematic filter in the Kendrick et al. estimator are:

Pt/aN V.'

pt/aE Vt/a,, WVN
Pt/an V4 /aD WV
v,/aN g(a + f3 e),)(lN)N + EaN - Va/IN

Vqa/ g(a + fle")(IN)E + 6 aE - Výa/I + G WdaN (C.1)

Vt •/an g(a +/ie")(lN)D + 8aD + g -- Va/I6 aN g +!etLaN W6.a"

-- a WhaD
"a 1 Wa
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where:

Pt/ON,m,. = position of the target relative to the attacker in inertial frame coordinates,

i.e., with components taken along the North, East, or Down axes of an earth-surface inertial

or navigation frame. Dot notation denotes time rate of change of the indicated variable,

as seen in the frame used for coordinatization.

V/aN,iD = velocity of the target relative to the attacker, as observed from and

coordinatized in the navigation (inertial) frame

baN,B,D = acceleration of the target relative to the attacker, in addition to accelera-

tion from normal load (lift), as observed from and coordinatized in the navigation (inertial)

frame

g = acceleration due to gravity

AN = g(a+/3e'6) = the magnitude of normal load acceleration, modeled as a positive

(non-zero) mean random process driven by the random variable c

E(t) = a random variable which drives AN (strictly, e is a stochastic process)

a, /3, 7 = parameters peculiar to particular aircraft types and operating conditions

e = the base of natural logarithms

(IN)N,E,D = the north, east, and down components of the unit vector (IN) in the

direction of normal load acceleration

"rN,EP,D = correlation times for first-order Gauss Markov models used to model accel-

erations other than that due to (nominal) normal lift

,r, = correlation time for the first order Gauss Markov process modelling the behavior

of e

Vq/IN,E,D = acceleration of the attacker (sensor) relative to the navigation (inertial)

frame, coordinatized in the navigation frame (assumed available from the attacker's inertial

navigation system - errors implicitly considered in noise parameters listed above)

WVNVE,VD,6aN,6Oa,6OaD,e = appropriate continuous time (heuristically) zero-mean white

Gaussian process driving noises, with some strength Q(t) as defined in Sect. 2.3.1
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and:

G- 03x7 (C.2)

C.2.1.2 Kinematic Filter Measurement Equations. Using the form of

Eqn. (2.15), the measurement equations for the kinematic filter in the Kendrick et al.

estimator are:

r

'r

h(x) = (C.3)

where:

r = attacker-to-target range:

r = [(Pt/a.) 2 + (Pt/a.) 2 + (Pt/a.)2]1 (C.4)

with corresponding rate of change:

_ (Pt/aNVt/,o) + (Pt/GE Vt/GE) + (Pt/GDV,/ao) (C.5)
[(Pt/ON) 2 + (pt/..) 2 + (pt/.)21]I

17 = (azimuth) angle between the projection noted above and local north at the

attacker's position:

r/= arctan (P:/a- ) (C.6)
(Pt/--

with corresponding rate of change:

C-3



*-(Pt/ON Vt/aB) - (Pt/aD Vt/aN) (C.7)
(Pt/aN)2 + (pt/aR) 2

S= (elevation) angle between the target/attacker vector and the vertical projection

of this vector onto the local horizontal plane:

o, arctan [ Pt/ ) ] (C.8)•r = rctan[(pe/..)2 + (pt/..)2]1.

with corresponding rate of change:

Pt/aD[(Pt/a[NVtION• ) + (Pt/•,Vt/a)] - Vtl/aD[(pt/ON) 2 + (Pt/aE)2 ] (C.9)

[(Pt/ON)
2 

+ (Pt/a.)2 + (Pt/-D) 2 ][(pt/o.) 2 + (pt/a.)2]½

z(ti), the measurement at time ti, is modelled as the sum of h[x(ti)] from above

(found using truth state values) and a vector of discrete time zero mean white Gaussian

noise v(ti), with an appropriate covariance IR(t,)

and all other variables are defined above.

C.2.2 Aspect Angle Filter.

C.2.2.1 Aspect Angle Filter State Equations. Using the form of Eqn. (2.5),

the state equations for the aspect angle filter in the Kendrick et al. estimator are:

0 0 0 100 0~ 000

0 0 0 0 10 0 0 00 0

0 00 0 01 4 + 0 00 W
+We (C.10)

0 000000 0 100 [ 0

0 0 0 0 0 0 0 0 1 0 WO

S0 0 0 0 0 0 0 0 0 1

where:

C-4



ip = is azimuth angle, first of three Euler angle rotations taken to carry the navigation

frame into the body frame (see [79:112-113])

0 = is elevation angle, second of three Euler angle rotations taken to carry the

navigation frame into the body frame

S= is bank angle, last of three Euler angle rotations taken to carry the navigation

frame into the body frame

wboo = appropriate continuous time (heuristically) zero-mean white Gaussian pro-

cess driving noises, with some strength Q(t) as defined in Sect. 2.3.1

C.2.2.2 Aspect Angle Filter Measurement Equations. Using the form of

Eqn. (2.6), the measurement equations for the kinematic filter in the Kendrick et at. esti-

mator are:

is:

Z = .(C.11)

where:

i, = imaging sensor-derived azimuth angle

imaging sensor-derived elevation angle

= imaging sensor-derived bank angle

= kinematically-derived yaw angle (an estimate, or pseudo-measurement):

-k arctan [(VY cos(a') + AN. sin(t)\ (Vý cos(at) AN. sin(at)'-'] (C.12)
S 1 lI IANI I ) IV + I JANIC
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= kinematically-derived pitch angle (an estimate, or pseudo-measurement):

I V, cos(at) AN sin(at)
.- lvin (0. 13)

Ok = z ý -I V 1 + IAN I

kinematically-derived bank angle (an estimate, or pseudo-measurement):

arctan [(V.A -VYAN.) sin(at) ANcos(at) ] (.14)

and H is therefore given by:

H F 13x3 03X3 (C.15)

[3x3 0
3x3

and all other quantities are defined above (note that [ ... I denotes magnitude of the

quantity enclosed).

C.3 The Andrisani / Kuhl / Gleason Estimator

The following equations are presented essentially as they appear in [5], with the

cxception that some changes were made to correct apparent errors. First, in the original

source, the negative signs required for the state equation of the first order Gauss Markov

process noises b:,Y,, were not present (it is possible, but not stated or conventional, that

a negative correlation time was intended). Second, it is clear that the denominator in

the arctangent expression in the sixth element of the measurement equation requires an

exponent of ½, which is not present in the original source. Third, review of [5] and [1871

makes it clear that the term k6vp is required in Eqn. (C.16), although it is not found as

such in this equation as it appears in [5].

C.3.1 State Equations. Using the form of Eqn. (2.14), the state equations for the

Andrisani et al. estimator are:
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[-I.- I,,)qr + kif3 + k2P + kjrl I.-.'

[-I.- I..)pr + k~vp + k7a + ksq] I;.,'

1' ~ ~ v - I..)pq + kl1f3 + k 12P + kl 3r] I.

q p ± q sin(o) tm(e) + r ros(o) tan(O)

q cos(qO) - r sin(qO)

*[q sin(o) + r cos(o)] cos- 1(0)

J cos(O&) sin(a) cos(O) - cos(4O) cos(cz) cos(4O) sin(O) -

1 ~sin(4o) cos(a) sin(O)] A + k16b.

{[sin(o4) sin(a) cos(d) - sin(4i) cas(a) cos(O) sin(O)+

cos(4i) cos(a) sin(O)] -m + Ih16by

* [- sin(a) sin(O) - cos(a) cos(O) cos(O)] A + g + kl6b,
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k41I/.. 0 0 0 0 0 0 0 0

0 kg/Iy 0 0 0 0 0 0 0

0 0 k151/hý 0 0 0 0 0 0

0 0 0 0 0 0 000 w1

0 0 0 0 0 0 000 w2

0 0 0 0 0 0 000 w3

0 0 0 k16  0 0 0 00 w4

0 0 0 0 k16  0 0 0 0 w 5  (C.16)

0 0 0 0 0 k 1 6 0 00 W6

0 0 0 0 0 0 0 00 w7

0 0 0 0 0 0 000 W8

0 0 0 0 0 0 000 0 w9

0 0 0 0 0 0 100

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 001

where:

p, q, r - angular rates of the body frame relative to the inertial frame, along the body

frame :, Yb,and Zb axes as defined in Fig. 5.23.

z, y, z = target-to-sensor distances along the respective inertial frame axes (first and

second derivatives with respect to time as observed from the inertial frame denoted by one

or two dots, respectively)

4k, 0, 0 = inertial frame to body frame Euler angles as defined for the Kendrick et al.

estimator.

Iz,'Y,,z = moments of inertia about the body frame Xb, Yb,and zb axes, respectively.

L = lift force magnitude, = 1 ( + i 2)SCLaa, where:

S = equivalent lifting surface area, and

CLa = the coefficient of lift

a angle of attack as defined in Fig. 5.23, such that:
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sin(a) = C/vp, where:

vp :(A 2 + C')', with:

A cos(O) cos(O)i + cos(G) sin(O)y - sin(O)i

C = [cos(O) sin(G) cos(O) + sin(O) sin(O)]i + [cos(q5) sin(G) sin('O) - sin(4) cos(4')]. +

cos(O) cos(O)i

M = mass

g = acceleration due to gravity

bYZ -- a time-correlated acceleration process noise, modeled as the output of a

first-order Gauss Markov model

Tr = correlation time constant for the previously noted process noise

k1,2 ,3 ... 16 = aircraft-class dependent constants, corresponding to quantities given in

[187]

Wl,2,3,4,5,r,7,8,9 = appropriate continuous time (heuristically) zero-mean white Gaus-

sian process driving noises, with some strength Q(t) as defined in Sect. 2.3.1

C.3.2 Measurement Equations. Using the form of Eqn. (2.15), the measurement

equations for the Andrisani et al. estimator are:

0. 0 112

R (z2 + 2 + z2)2 V4

- arctan(2 L) + V5 (C.17)

E ~~~arctan [Z;2~

R~~ ~ (zy ~ (a2+y.) 2Y 116

E[z(Xi + Yý) _ i(X + y,2)] [(2 + 2 2 z( 2 + -21 1
2 _)
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where subscript m denotes measurement by a pose estimator, and

1/1,2,3,4,5,6,7,8,9 = discrete time zero mean white Gaussian noises with appropriate

covariance R(t) as defined in Sect. 2.3.1; evidently, Andrisani et al. chose to use "P"

rather than "v" notationally as we have done for this form of variable.

R (range), 2q (azimuth angle), and e (elevation angle) measurements and correspond-

ing rate measurements are defined exactly as for the Kendrick et al. estimator.

and all other quantities are defined above.

C.4 The Sworder / Hutchins Estimator

Recogmzing that most "pose" estimators assign the target to one of a finite number

of discrete orientations (as discussed earlier in Sect. 2.2), say I in number, and that lateral

acceleration can likewise be discretized, to say k in number, Sworder defines a Kronecker

product space [38] a ® p consisting of all possible orientation (a) and acceleration (p)

combinations. He then notes that transitions in this space occur according to the theory

of marked point processes, as defined by Snyder [205]. Using this theory, Sworder et al.

are able to define a differential equation which governs the estimate of an indicator for the

presence of the system in any of the k x 1 states:

dý, - QT~tdt + (diag(ýt)- _OtýT )(A(1k ® I,))T x diag( )dcrt (C.18)

where (note that "x" denotes multiplication in the Sworder development, not vector cross

product):

a vector of dimension k x 1, each element of which is a value from zero to one rep-

resenting the probability that the true target is in that particular acceleration/orientation

state

Q = a k x I by k x I transition rate matrix giving the probability rate of transitions

between states - e.g., the probability that the target is in state 3 at some time t + dt, given

that the target is in state 2 at time t is equal to q23 x dt, where q23 is the element of the
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matrix Q in the second row and third column. Diagonal elements are handled differently -

the probability that the target is in any state i at some time t + dt, given that the target

is in state i at time t, is equal to (1 - q11) x dt

diag(ý,) = a k x I by k x I diagonal matrix, elements of which are the elements of

the vector ý,

A = is an I x I matrix, the i-jth (row-column) element of which is the expected rate

of measurements showing target orientation in the ith aspect bin, if the target is in fact in

the jth aspect bin

(1 ® I)T - the transpose of the Kronecker product of the transpose of a k-

dimensional vector of ones and an I x I identity matrix, defining a k x I by i-dimensional

matrix

diag(•1') = a diagonal matrix of dimension I x i, the elements of which are the

inverse of the elements of the I dimensional vector defined by A x (IF ® Ik ) × 4

art = a vector of length 1, each element of which represents the number of observations

with that particular aspect bin reading over the entire measurement history

t = time

Like the Kalman filter state estimator, this estimator operates using a set of propa-

gations and updates [208]. Propagations are given by:

t= QT 4  (C.19)

and updates by:

6 =t = (diag(k,) - 'tkpT )(A(1K I IL))T x diag(Vt)5•rt (C.20)

(where "6" denotes an impulsive change in the indicated variables at measurement time,

and all other variables are defined above). The measurement at any given time is the

apparent discrete orientation value from the pose estimator. Note, as does Sworder, that

although Eqn. (C.18) is presented in continuous-time form, for point process measurements,
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where dat is zero except at measurement updates, Eqns. (C.19) and (C.20) are a correct

implementation of Eqn. (C.18). Finally, the orientation and acceleration values define an

inertial acceleration which plays the part of a reasonably well estimated control input (u(t),

in Eqn. (2.14)) for the state equation of an extended Kalman filter which uses conventional

rangc and angle-derived kinematic measurements.

C.5 Nonlinear Kinematic Tracker Effort by Bishop.

Bishop's effort, referred to in Sect. 2.3.1.4, is based on work by Krener et al. [26, 87,

131, 132, 130, 45, 215], and shows that, for a particular target maneuver model, if a (one-to-

one, onto, C'", generally nonlinear) transformation T: Rn -, R", defining x = T(y) exists

by which a nonlinear state equation of the form in Eqn. (2.24) (although Bishop explicitly

defines his stochastic differential and integral equations "in the sense of Statonovich,"

rather than It6) can be transformed into an approximate observer (state) canonical form:

#(t) = Ay(t) + b(y(t)) + w(t) (C.21)

with continuous-time measurements given by:

z(t) = Cy(t) + v(t) (C.22)

(where y is a vector in the transformed space, A and C are block diagonal matrices, b

is a nonlinear transformation acting on y(t), and other variables are as defined earlier,

except that the measurement noise v(t) parameters now conform to a continuous-time

measurement description), then a stable estimator of the form in Eqns. (2.16) and (2.18)

(i.e., working directly in the untransformed or original vector space) can be defined without

explicit computation of the transformation T. Bishop finds that this estimator provides

improved tracking performance over an extended Kalman filter using the same (planar

turn) target model, and proves that his geometric nonlinear filter is locally asymptotically

stable for deterministic inputs, and that the second non-central moment of the estimate

error probability density is bounded for stochastic inputs.
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The Bishop development does not address the issue of the sensitivity of operating

this continuous-time filter on a digital computer with discrete-time measurements - the

usual environment for modern estimators. In general, operating a continuous-time filter as

a discrete-time process, rather than starting with a discrete-time model and then designing

the estimator, can lead to performance problems [153:43,172].

C.6 Equations and Additional Results for Optimal Smoothing

C. 6.1 Overview. Implementation of the target recognition approach in Chapter V

requires an estimate of target acceleration based on kinematic tracking information only.

For this purpose, the author implemented an optimal smoothing routine. This proposal to

use optimal smoothing in a tactical application is believed to be relatively new - the only

published references known to make a similar proposal are by Mahalanabis et al. [148, 149].

Note that optimal smoothing for reentry vehicle state estimation in strategic defense and

space operations is believed to be relatively common (e.g., see [51]).

The implementation of a fixed lag smoother actually starts with the operation of a

fixed point smoother for as many measurement intervals as required to achieve the desired

lag between the current time and the first time for which the fixed lag smoother state

estimate is required. Accordingly, we present the equations for both forms of smoother, as

implemented for this effort. All equations are taken from [155:1-18], which in turn refers

to [159] and [160], among others. We also consider details of smoother implementation

using output from the Kalman filter simulator MSOFE [167]. All of the information

required to obtain these smoother estimates is obtained from the concurrently-operating

conventional 9-state Kalman filter with Gauss-Markov acceleration (i.e., Singer model [202],

as described in Sects. 5.5.2 and 2.3.2.1).

The smoother equations given here provide an optimal estimate for the case of tar-

gets described by linear state models, drivep by (heuristically) continuous white Gaussian

noise, having measurements that are a linear function of the states, corrupted by additive

discrete white Gaussian noise. We refer to these as the classic "linear, white, Gaussian"

filter and measurement model assumptions, as discussed in Sect. 2.3.1.1. None of these

requirements is ever actually satisfied in practice. In particular, real systems are infinite
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dimensional, while feasible estimators are inherently finite dimensional. Thus, our models

are purposefully of reduced order, and we seek a level of modelling fidelity that balances

feasibility with accuracy.

In our case, the (truth model) aircraft targets were modelled as moving instanta-

neously from linear flight to constant turn rate (i.e., constant speed, constant non-zero

specific force normal to the velocity vector) turns lasting 5-10 seconds, and then returning

to linear ffight. Thus, a Gauss-Markov acceleration filter model is hardly a perfect model.

However, the filter dynamics are linear, and, since measurements are given as position and

one (doppler) velocity component in a sensor frame, the measurement model is linear with

respect to the states (although the measurement matrix H changes with target position

relative to the sensor, or effectively, with time). In any case, the "optimal" smoother

performed quite well.

However, since smoother-derived acceleration states were still rather more noisy in

our research than desired for defining target acceleration, target acceleration was ultimately

estimated by fitting smoother-derived position as a function of time to second-degree poly-

nomial curves, and differentiating twice to find acceleration. This process is also discussed.

Finally, additional results are presented and discussed. Plots were generated using

Matlab [151].

C.6.2 The Fized Point Smoother. The fixed point smoother gives the optimal

state estimate i(t. I ti) for some (discrete) time ti, conditioned on measurements and

corresponding Kalman filter outputs through some equal or later time ti, where *(t. I ti)

is simply i(tt) from the concurrently running Kalman filter. This smoothed estimate is

found using the following equations, for t, _> ti+,:

i(t, I tA =--t I t1)+ w(tj)[Xtj-) - it-](C.2.3)

where:
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w(tj) JA(t4 = (C.24)
k=i

and:

A~t de (C.25)

The terms in these equations are found as follows:

R(tj+) = the filter state estimate following update at time ti.

= the fiter state estimate prior to update at time tj.

P(t+) = the fiter covariance estimate following update at time tk.

P(t-+l) = the filter covariance estimate prior to update at time tt+l.

.iT(tk+1, tk) = the transpose of the classical state transition matrix 4I(tk+l, tk) for

propagation of primal state variables from time tk to tk+1 (i.e, ]bT(tA+l, tk) is the state

transition matrix for propagating adjoint quantities backward in time).

Note that W(ti) = Ixn., an identity matrix of order n (the dimension of x).

If the classical "linear, white, Gaussian" modelling assumptions apply (as in Sect.

2.3.1.1), the covariance P(t. I tj) of the estimate i(t, I tj) (alternatively, the covariance of

the error in this estimate) is given by:

P(t, i tI) W P(ti I t•. 1 ) + W(t,)[P(t+,) - P(tj-)]WT(tj)

P(t, I t3 _1 ) - W(t 3)K(t,)H(tj)P(t-)W T (t,) (C.26)

where all terms are defined above or in Sect. 2.3.1.1, and P(t, I t,) is simply P(t+) from

the concurrently running Kalman filter. If the classical assumptions do not apply, then

Eqn. (C.26) at least provides an estimate of the estimate or error covariance.
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C.6.3 The Fized Lag Smoother. The optimal state estimate for an N-step time

lag is given by:

i(ti+l I ti+N+l) = (ti+ 1,ti)(ti I t+N)

+C(ti+N+l )K(ti+N+1)[Zi+N+l - H(ti+N+x )i(t-+N+1)]

+U(t,+1 It, I t,+N)- k(t+)] (C.27)

where the n-by-n "gain" matrix C(ti+N+l) is given by

i+N

C(ti+N+l) = f A(tk)= A-1(ti)C(ti+N)A(ti+1v) (C.28)

with A(tk) defined in Eqn. (C.25); and the n-by-n matrix U(ti+l) is given by

U(ti+i) = Gd(ti)Qd(ti)Gd(ti)• T (t ,t 1+l)p-(t+) (C.29)

Under the usual "linear, white, Gaussian" assumptions, the smoothed estimate has

zero-mean error, and the covariance of the estimate and/or error is given by:

P(ti+l I ti+N+1) P(ti+l) - C(ti+N+1)K(ti+N+I)H(ti+N+I)P(ti-+ I)C T (ti+N+1)

-i-l(ti)[P(t+) - P(t. I ti+N)]A-l(t,)T

P(t-+1 ) - C(ti+N+I)[P(ti+N+I) - P(t++N+l)]CT(ti+N+I)

-A-1(tj)[P(t+) - P(t, I ti+N)]A-l(ti) T  (C.30)

The fixed lag smoother is initialized using a state estimate k(to I tN) and covariance

estimate P(t 0 I tN) found by iterating the fixed point smoother for fixed point to a total of

N times. These values become *(ti I t,+N) in Eqn. (C.27) and P(tj I t,+N) in Eqn. (C.30),

respectively.
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C.6.4 Optimal Smoothing with MSOFE Output. In the Kalnan filter simulator

MSOFE [167], all outputs are controlled from subroutine OUT. For smoother implementa-

tion using MSOFE outputs, the pre-measurement update quantities i(t7) and P(t,7) are

available after subroutine USROUT is called from subroutine OUT with calling argument

IOUT = 3. Post-measurement quantities R(tt) and P(t&) are available after subroutine

USROUT is called with IOUT = 5.

Since MSOFE performs sequential scalar updates, the quantities K(tj) and H(tj) are

made available vector by vector at each scalar update after subroutine USROUT is called

with IOUT = 4 (m events per set of scalar measurements). These quantities are saved at

each IOUT = 4 call and output as matrices with post-measurement state updates at each

IOUT = 5 event. Note that K(t,) is provided column-by-column, while H(tj) is provided

row-by-row. Similarly, the expected measurement vector H(t3 )*(t;-) and corresponding

noise-corrupted measurement are made available scalar by scalar, and output as vectors

at each IOUT = 5 event.

It is important to understand, however, that the Kalman fiter gain K(tj) and ex-

pected measurement values H(tji)(t,-) generated in this way from successive scalar mea-

surement updates in MSOFE are not the same as those which would be generated by a

classical vector measurement update filter. As discussed in Sect. 4.3, where successive mea-

surements provide non-independent information about the same states, or measurement

noise is not independent between measurements, we may expect that this MSOFE-provided

sequence of expected measurement values and Kalman fiter gains reflect information from

previous scalar updates. In MSOFE, the classical Kalman gain matrix and expected mea-

surement value vector are not generally available prior to the sequence of measurement

updates.

For example, in our case, each of the three target position measurements in general

provides some information about target position along each of the three inertial axes. How-

ever, since the "sensor frame" axes are orthogonal to one another, and measurement noise

is considered independent on each axis, the position measurements are in fact indepen-

dent from one another with respect to the information each provides about any one state.

Therefore, we do not expect that one sensor frame scalar position measurement update
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will change the expected measurement value for a subsequent scalar position measurement

in the same measurement set. On the other hand, the doppler velocity expected measure-

ment is not independent from the prior measurements: in particular, it is affected by the

prior measurement of range, or position along the sensor "boresight" axis - thus expected

doppler measurements before and after the scalar position measurements will differ.

The smoother equations given here and in [154:13-14] apply to the vector update

case. With careful manipulation and consideration, however, these equations can be

made optimal as well for information available from MSOFE, as taken from sequential

scalar updates. First of all, the reader should note that the quantity K(ti+N+1)[zi+N+l -

H(ti+N+1)*(t-+N+l)] from Eqn. (C.27), or i(t+N+l) -:k(t.N+1), is exactly the same vector

quantity whether the Kalman gain matrix K(ti+N+l) and the residual vector [Z(ti+N+I) -

H(ti+N+l)*(t4+N+l)] are computed before the measurement update, or assembled after-

ward using Kalman gain vectors and scalar residuals from successive scalar updates. Sim-

ilarly, although the quantity K(ti+N+I)H(ti+N+l)P(t4+N+I) will be computed incorrectly

in Eqn. (C.30) if K is assembled from MSOFE Kalman gain vectors, the correct quantity

is available in any case as P(t-+N+I) - V(ti++N+1), computed from filter covariance values

(respectively) before any and after all measurements.

Note, however, that further complications are to be expected regarding the relation-

ship between scalar and vector measurement updates if feedback control, sensor failures, or

nonlinear processes come into play from scalar update to update. If desired, the classical

K(tj) matrix can be reconstructed using pre-measurement information and Eqn. (2.11),

and expected measurement values can likewise be found prior to any scalar updates. For

the fixed point smoother, the need to reconstruct the matrix K(tj) in this way is avoided

in any case by using the first equality in Eqn. (C.26).

To limit complication in the MSOFE code, the author's smoother uses MSOFE

scalar-update-generated Kalman gains and residuals, subject to the considerations noted

above, subsequently assembled into vector-matrix form. These MSOFE-generated quan-

tities were written to a file "SMOODAT" with a format similar to that of the MSOFE

output file "CTOM" (plot output for continuous variables), which is processed by pro-

gram MPLOT (a plot post-processor for MSOFE output). The Smoother/Recognizer
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program, then, was a derivation of MPLOT which routed input data from "SMOODAT"

into smoother subroutines rather than plot processing subroutines.

The only problem encountered in operating the fixed point and fixed lag smoothers

was an instability problem in the fixed lag smoother after 3-4 seconds in single precision,

or 15 seconds in double precision. At least part of this instability is believed due to sub-

optimal covariance matrix inversions associated with Eqn. (C.25), in which old information

is "backed out" of the smoother. The smoother was first implemented in single precision,

which implies a 4-byte word length on SPARC workstations. The rapid development of

instability in this mode was investigated, and it was found that single precision matrix

inversion, followed by multiplication of the original matrix with its inverse, resulted in

off-diagonal terms as large as 10' - i.e., significantly non-zero. It was clear that 30-40

iterations of this process over 3-4 seconds could introduce significant numerical error into

the computations.

Double precision inversion and double precision multiplication were required to keep

off-diagonal terms smaller than 10'. Running the smoother with double precision op-

erations allowed the algorithm to run for lengths of time sufficient to prove the concept,

but, even in double precision, the fixed-lag smoother will become unstable after 15 or so

seconds.

This instability is but a minor concern for at least four reasons. First, in an ac-

tual on-line implementation, most smoother parameters could be kept as fixed gains, and

operations like Eqn. (C.25) would not be implemented on-line. Second, if it were neces-

sary to do so, the smoother can be "freshened" by restarting the recursive computation

of Eqn. (C.25) with stored values. Third, one may choose to implement a "fully factored"

or numerically stable form of smoother [31]. Finally, as noted, the time period prior to

instability was adequate for our purposes in any case.

C.6.5 Curve Fitting. As discussed in Sect. 5.6, the smoother-derived target

acceleration estimate per se was much closer to the true target acceleration than the filter-

derived acceleration estimate, but smoother-derived acceleration was still rather more noisy

than desired for algorithm functioning. It must be emphasized that the author's algorithm
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is designed to identify target accelerations relative to the body frame that remain reason-

ably constant within defined bounds (nominally +/- 5 feet per second squared over an 0.8

second period) - indicative of a steady state condition in the target maneuver. The identi-

fication of this condition and a corresponding nominal acceleration level define the start of

the recognition process - for this reason, a smooth, if not perfectly accurate, acceleration

estimate is essential. Errors in the accuracy of the acceleration estimate are overcome by

the dynamic programming "motion warping" process.

The final acceleration estimation method selected was to fit smoother-derived posi-

tion to a second degree (quadratic) polynomial curve, and differentiate twice to find accel-

eration. This curve fitting was accomplished with the use of the IMSL utility "RCURVE"

[114], which provides least-squares polynomial curve fit parameters for a curve of given

degree to fit an array of points. In this application, the smoother-derived position along

each inertial (filter) axis is maintained as a set of 43 values at 0.1 sec. intervals, covering

an elapsed time of 4.2 seconds, and the acceleration is taken at the midpoint of the curve.

Thus, typically, a total of 4.1 seconds is required before the curve fit-derived acceleration

estimate is available for some given (real) time. That is, 4.1 sec. = 2.0 sec. smoother lag

+ 2.1 sec. ( = 0.5 [4.2 sec.]) curve fit delay.

It should be noted that the use of the IMSL utility "RCURVE" is a simple, but

inefficient way to implement a least squares curve fit. Had this curve fit been performed

internally to the author's code, a recursive update to the curve fit parameters would have

been possible, with low computational load.

Other approaches for acceleration state estimation by curve fitting to position mea-

surements are discussed in [50] and [74]. The author does not recommend acceleration

state estimation by curve fitting to Kalman fiter-derived position measurements per se,

for reasons that will be clear in the following section.

C.6.6 Results and Discussion. In this section, we present smoother results from

four different tracking scenarios. Some results shown in Chapter V were taken from a

fifth scenario - all five scenarios are presented in Fig. C.1. With reference to the results

in Chapter V, the first scenario corresponds to Figs. 5.26, 5.27, and 5.29 through 5.31,
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Figure C.1. Target Trajectories for Smoother Discussion

while the second scenario corresponds to Figs. 5.28 and 5.32. These results concentrate on

acceleration state estimation, since that is by far the most critical variable for our purposes.

The plots show mean error in state estimates by the (1) Kalman filter, (2) smoother, and,

where required, (3) least squares quadratic curve fit to smoothed position, respectively,

for Monte Carlo sets of 20 runs with the parameters given in Chapter V. Also shown

are the true mean error and mean +/- one standard deviation bounds for the filter and

smoother, as well as the filter and smoother-predicted error standard deviations (filter and

smoother-predicted mean error are zero by definition). Standard deviation curves for the

true error in the curve fit estimate are not shown to maintain clarity, but are on the order

of or slightly smaller than the corresponding standard deviations for the smoothel true

error.

In each case, target accelkrations last for eight seconds, starting at 2.0 or 3.0 seconds,

depending on the scenario (maneuver onset time is clear from the plots). In all but the
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last case, the Kalman filter track begins at 0.0 seconds, and the smoothed estimate starts

at 2.0 seconds and runs until 11.9 seconds (using a posteriori information from 4.0 to 13.9

seconds, respectively - a two-second time lag). The last case uses a one-second time lag,

and the unique timing issues for that case will be noted below. The difference in start

time for the maneuvers is simply to show that the smoother performance is robust with

respect to changes in start time. Figures C.2 and C.3 show the error in east (inertial y

axis) target -cceleration and position, respectively, for Scenario 2. The position error plot

does not show a mean curve fit position error since this plot follows the mean smoother

error curve exactly.

Note that the positive position estimate error indicates that the smoothed position

estimate leads the true position somewhat, while the filter position lags significantly. The

key point, alluded to above, regarding this filter position estimate lag is that curve fitting

to filter position estimates, followed by twofold differentiation to find acceleration, did

not yield adequate acceleration estimates - the typical position estimate "lag" as seen

here translates into a low acceleration estimate after curve fitting and differentiation. The

relatively small position lead error from the smoother has an unnoticeable effect on the

acceleration estimate.

Also, note that just before the commanded acceleration ceases at 11 seconds, the

smoother position estimate starts to lag the true position. This is due to the fact that

the smoother is "aware" that the acceleration will soon cease, and has begun to react

appropriately.

Figures C.4, C.5 and C.6 show the error in east (inertial y axis) target acceleration

and position, and downward (inertial z axis) target acceleration, respectively, for Scenario

3. This scenario is provided to show that smoothing provides considerable robustness to

choices of target acceleration model parameters. Recall from Chapter V that this filter is

tuned for a ("benign") target acceleration standard deviation of one g (32 feet per second

squared) - clearly, the filter cannot follow the 6 g target in Scenario 3 at all well, but the

smoother reduces state estimation errors dramatically. This performance is achieved even

though this target, due to its relatively low speed and high g turn, actually reverses its

direction over the course of the maneuver. Thus, it appears that we can use "benign" filter
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tuning parameters and thereby "damp out" trajectory estimate error due to measurement

noise, but preserve low estimation errors for highly dynamic targets by smoothing.

Figures C.7 and C.8 show the error in east (inertial y axis) and downward (inertial

z axis) target acceleration, respectively, for Scenario 4. Fig. C.7 shows that improvement

in the state estimate is gained even for benign maneuvers, while Fig. C.8 demonstrates

that optimal smoothing does not provide improvement in the absence of an unmodelled

external driving force (an unmodelled "Q"), as discussed in [154:13-14].

Figures C.9 and C.10 show the error in east (inertial y axis) and downward (inertial

z axis) target acceleration, respectively, for Scenario 5. Results here are consistent with

previous cases, for this somewhat different trajectory.

Finally, to observe the effect of a reduced lag time, Fig. C.11 repeats the scenario of

Fig. C.9 with a one-second fixed lag time, instead of two seconds. Note the considerable

degradation in the accuracy of the smoother-derived acceleration estimate. Some curves

are not labeled due to the close spacing, but the general effect of this time reduction is clear.

The curve fit-derived estimate is not substantially degraded in the mean, however - a more

dynamic turn would have produced more error in this estimate. Note that the smoother

estimate now lasts for an additional second, since the smoother cutoff is referenced to the

same real time point as in the previous cases, and the smoother now runs until one second

prior to that time, rather than two seconds prior, as in the previous cases.

C. 7 Equations for Direction Cosine Matrix (DCM) Generation

The purpose of this section is to provide the reader with simple procedures for gen-

erating direction cosine matrices (DCM) for tracking problems. We seek to avoid, to the

extent that we can, the laborious process of defining Euler angles.

C. 7.1 DCM for Sensor-to-Inertial Frame Transformation. The following discus-

sion applies equally to the transformations (1) from the true line-of-sight or sensor frame

to the inertial frame, and the inverse transformation, or (2) from the filter-predicted line-

of-sight or sensor frame to the inertial frame, and its inverse. The only difference is that in

transformation (1), the true target location is used, while in transformation (2), the latest
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best filter estimate of target location is used. The first set of transformations, not actually

available to the tracking algorithm, is used to define "truth" measurement values, including

noise realizations. The second set of transformations is used to define the Kalman filter

measurement matrix H, expected measurement values, and so on - these transformations

are of course available to the filter. Note that this discussion assumes perfect knowledge

of sensor or "ownship" inertial position and orientation with respect to the local level. If

required, one can further define true and filter-assumed inertial frames (see appropriate

Fortran code in [143]).

Obtaining the direction cosine matrix for sensor-to-inertial frame transformation

starts by defining the sensor-to-target or boresight vector iB in inertial frame coordinates.

Dividing this vector by its length (range), we obtain the sensor-to-target unit vector, lB.

Now, take the vector cross product of the local downward or inertial unit vector

i. ([0, 0, 1 ]T, in inertial coordinates) with the sensor-to-target unit vector (i. X 6B). The

resulting "elevation axis" vector is generally of non-unit length, and, by definition of the

cross product, normal to the two vectors crossed to produce it. Thus, it is parallel to

the local horizontal. Now divide the elevation axis vector by its length to normalize it,

producing the elevation axis unit vector iE in inertial frame coordinates.

Next, cross the sensor-to-target unit vector, iB into the elevation axis unit vector iE

(iB x i5) to produce the azimuth axis unit vector iA in inertial frame coordinates. Since

the two unit vectors crossed to produce iA were normal or perpendicular to each other,

their cross product is automatically of unit length also, and does not require subsequent

normalization. The sensor frame is now defined by 6B, iE, and iA, as shown schematically

in Fig. 4.1.

Each of i6, iE, and iA is a three-element column vector of inertial frame coordinates.

Arranging these three vectors vertically side-by-side as a three by three matrix, we imme-

diately have the direction cosine matrix C', for converting from the sensor or line-of-sight

(subscript Is) frame to the inertial (superscript i) frame. That is, multiplying C', times

a vector coordinatized in the sensor frame (vector element order: boresight axis compo-

nent, elevation axis component, azimuth axis component) yields a vector coordinatized in

C-29



the inertial frame. Finally, since C', is a unitary matrix, its inverse C0 is equal to its

transpose.

C. 7.2 DCM for Target Lift-to-Inertial Frame Transformation. In Chapter V,

we discussed definitions for the target velocity and target body coordinate frames. The

purpose of this section is to expand upon that discussion and consider some details of the

author's implementation and use of coordinate frames.

In Sect. 5.5.3.1, we found a representation for the velocity frame and the DCM

transformation C! from inertial to velocity frames using the classical (Euler) angles of

heading and flight path angle. Following the discussion on the sensor frame in the previous

section, the reader may now note that the velocity frame is defined relative to the velocity

unit vector exactly as the sensor frame is defined relative to the boresight vector. This fact

presents a convenient alternative to Euler angles for obtaining C? - i.e., through vector

cross products as in the previous section. The result is equivalent element for element to

that found using Euler angles as shown in Eqn. (5.4).

As a useful intermediate between the velocity and body coordinate frames, the au-

thor's simulations occasionally make use of a "lift" frame. This lift frame (denoted by

subscript L) is essentially identical to the "wind" frame (denoted by subscript w) as de-

fined by Etkin [79], distinguished from the inertial frame by heading angle 77, flight path

angle 7, and a roll angle p, in that order. The author desires to distinguish between Etkin's

wind frame and the lift frame, however, since the last Euler angle (roll) taking the inertial

frame into the Etkin's wind frame is defined by a vehicle plane of symmetry, while in our

case, this angle is defined by the direction of the aerodynamic normal load or lift vector.

In fact, these definitions are equivalent in most cases, but the possibility of a difference

should be kept in mind.

Definition of the DCM for target lift-to-inertial frame transformation starts by defin-

ing C! using either Euler angles or vector cross products. Depending upon the application,

target state values may be actual (true) or estimated quantities, and simulation code must

ensure that appropriate values are used.
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Next, define the target acceleration normal to and along the velocity vector. The

desired inertial acceleration normal to the velocity vector can be isolated into velocity

frame components (1) ay, parallel to the local horizontal, and orthogonal to the velocity

vector, and (2) as, generally downward, mutually orthogonal to the velocity vector and

ay. The specific force normal to the velocity vector required to achieve this acceleration

is assumed due to aerodynamic lift, and can be isolated into components (1) ay, (2) a.,

and (3) g cos(7), parallel to a., and counteracting the component of gravity along the z,

axis. The angle p is then calculated as shown in Fig. 5.24. Note that lift is positive in the

direction opposite to the lift frame zL vector, which points generally downward.

The lift frame and the velocity frame are distinguished only by the roll angle p about

the velocity vector. Thus, we obtain the DCM for transformations from the inertial to the

lift frame by premultiplying C? by the direction cosine matrix C', which is found as:

1.0 0 0

CL = 0 cos(p) - sin(p) (C.31)

0 sin(p) cos(p)

The usual assumptions for aircraft wind and body frames call for the transformation

from wind frame to body frame to proceed by a two-part rotation: first about the z, axis

by a sideslip angle fl, followed by an angle-of-attack rotation a about the (now rotated)

y.o axis (nominally, through the wings), as shown in Fig. 5.23 and [79]. As noted in

Sect. 5.5.3.1, however, the nominal assumption in this research calls for a zero sideslip

angle. For that reason, the nominal target body frame is generally found by rotating the

lift frame directly by an angle of attack a about the yL axis (the lift frame axis mutually

orthogonal to the lift and velocity vectors - generally, through the wings, as for the wind

frame yw axis [79]).

For the development in Chapter IV, it was desirable also to model sideslip angle, but

transformations from the lift frame to the body frame involving this angle were modelled

as proceeding in the order of angle of attack first, then sideslip. This was done because

angle of attack is the major variable in force calculations, and the author did not desire
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to recompute angle of attack following changes in sideslip angle. In any case, for small

angular displacements, effects from these two rotations about orthogonal axes may be

approximated as independent of order, as motivated in [187:2.17].
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Peschon, and then we will consider modifications that might be desired to provide more

rigorous answers, if the basic assumptions of this development do not apply.

3.6.3 Relating I*(xk, k) to Object Class Probability p(W, I Zf, Z,). Recall

that the "practical version" of the Larson and Peschon method as implemented on dif-

ferent object models w, would find the Xc,,, say Xk,,, for each , that maximizes

p(X,.I Zf, Zd,, w,), not by maximizing this conditional probability directly, but rather

by maximizing I* (xa,, k), where (using the original Larson and Peschon form, but recalling

that in our development for object recognition, all probabilities would be conditioned also

on Zd and wi):

MAX [p(zI x*) p(xI x. -1, k - 1)] } (3.10)

k• A ; x ~ at

or, in our form:

MAX I*(x*,., k JWi) =

Xaaxak,n g_1

Maximizing this quantity rather than the conditional probability is desirable because

we avoid having to compute values for all Xk,, E X.I', which we would have to do to find

the denominator term as in Eqn. (3.6). Examining I*(xk,., k w1) closely, note that the

preceding equation is equivalent to:

MAX I*(x*..,k Iw) = MAX [p(X,,Z/• I Z•,w5 )] (3.12)

Thus, the practical version of the Larson and Peschon equations gives the maximum

value of p(X.6,., ZV I Zd, w), and the state history estimate it'., for a given w, which

gives that maximum joint conditional probability density, or, equivalently, since there is

only one ZI, that state history which maximizes p(X,,. IZ Zd,,w,).

Suppose on the other hand that we had chosen to find p(Xk*,n Z.,I , I Zd) for all

X"A,. E XP61. This can be had by computing P(X, Z ZIw) for each X, over each w,
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6 October 1995

LTC Edmund W. Libby, Ph.D.
485 Cooke Dr.
Redstone Arsenal, AL 35808

Defense Technical Information Center
Attn: RSR (Mr. Banks / Ms. Campbell)
8725 John J. Kingman Rd.
Suite 0944
Ft. Belvoir, VA 22060 - 6218

Dear Mr. Banks / Ms. Campbell:

My dissertation, entitled "Application of Sequence
Comparison Methods to Multisensor Data Fusion and Target
Recognition" (DTIC No. ADA 267623) was sent to DTIC in July
or August of 1993 from the U.S. Air Force Institute of
Technology at Wright-Patterson AFB (Dayton), Ohio.

Several months later, I submitted a change to page 3-
27. Subsequently I realized, however, that this change
still contains a minor error -- a comma and a letter "n" are
missing in one equation.

Enclosed is a "re-revised" page 3-27. I appreciate
your help I making this correction. It's a small item, but
I want the document to be correct.

Thanks again,

Edmund W. Libby, Ph.
PM for Theater Targets



Peschon, and then we will consider modifications that might be desired to provide more

rigorous answers, if the basic assumptions of this development do not apply.

3.6.3 Relating I*(xt, k) to Object Class Probability p(w, I V, Zd,). Recall

that the "practical version" of the Larson and Peschon method as implemented on dif-

ferent object models wi would find the Xl,., say fj/,P for each wi, that maximizes

P(XR, I ZK, ZI, wi), not by maximizing this conditional probability directly, but rather

by maximizing I* (x", k), where (using the original Larson and Peschon form, but recalling

that in our development for object recognition, all probabilities would be conditioned also

on Z' and wi):

MAX I*(x4t k) = MAX I MAX [p(zl x',) p(x, I X.d~) P*(Xd~, k _ 1)] } (3.10)
4~k 4 ~ x:1a 1

or, in our form:

MAX I*(x,, k Iw1) =
xka,4,?'
MAX { MAX [p(zf Ix,-w,),p(,, _, )( k,-11w1 )]} (3.11)

Xa Xa
X-,n xk-l,n.

Maximizing this quantity rather than the conditional probability is desirable because

we avoid having to compute values for all Xa,,, E XYa, which we would have to do to find

the denominator term as in Eqn. (3.6). Examining I*(x4,,, ki wi) closely, note that the

preceding equation is equivalent to:

MAX I'(xZ,,,,,k I w) = MAX [p(X:,,Z/ Zn,,,)] (3.12)

Thus, the practical version of the Larson and Peschon equations gives the maximum

value of p(Xt, Zfk IZ•, ), and the state history estimate t-P for a given w, which

gives that maximum joint conditional probability density, or, equivalently, since there is

only one Zf, that state history which maximizes p(X ZI, Z Zd, W,).

Suppose on the other hand that we had chosen to find p(X,, .,V,w, I Zd) for all

Xom,,. E Xp,. This can be had by computing p(X:,,., ZI I Zd,w 4 ) for each Xa,,. over each wi
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